August 30, 2007

Chem. 1410

Problem Set 1, due Sept. 10, 2007

Do the following problems from Engel; these are *not* to be handed in for grading; solutions will be distributed via .pdf.

Chapter 1: P1.2, P1.7, P1.12, P1.17, P1.19

The following two problems are to be handing in for grading:

(1) **Density of states of electromagnetic modes in a blackbody cavity**: In class we asserted that at absolute temperature T the density of electromagnetic states ("modes") inside a blackbody is

$$D_{\lambda}(\lambda) = \frac{8\pi}{\lambda^4}$$
 [1]

(Note: the units of $D_{\lambda}(\lambda)$ are "# modes/[unit volume][unit wavelength]".) This means that in a small wavelength interval $[\lambda - \Delta \lambda/2, \lambda - \Delta \lambda/2]$, the number of electromagnetic modes per unit volume is $D_{\lambda}(\lambda)\Delta\lambda$. Show that Eq. [1] is equivalent to the following density of states in frequency space:

$$D_{\nu}(\nu) = 8\pi \nu^2 / c^3$$
 [2]

where c is the speed of light. (Note: the units of $D_v(v)$ are "# modes/[unit volume][unit frequency]".)

The following remarks may be of use:

- i) $v = c/\lambda$.
- ii) $D_{\lambda}(\lambda)\Delta\lambda = D_{\nu}(\nu)\Delta\nu$, where $\Delta\lambda$ is a small wavelength interval and $\Delta\nu$ is the corresponding small frequency interval. [Why?]

Note: Eq. [2] is employed directly in Engel Eq. 1.1.

- 2) Average thermal energy in a harmonic oscillator. According to the principles of statistical physics, the relative probability to find a system in state j characterized by energy E_j is $\exp(-E_j/k_BT)$, where T is the absolute temperature and k_B is Boltzmann's constant.
- a) In the case where the system is an electromagnetic cavity mode frequency ν , the allowed states j=0,1,2,... correspond to energy $E_j = jh\nu$ (i.e., 0,1,2,... photons in the mode). Thus, the average thermal energy of a cavity mode of frequency ν at absolute temperature T is given by:

$$< E(v) > = hv \sum_{j=0}^{\infty} j e^{-jhv/k_B T} / \sum_{j=0}^{\infty} e^{-jhv/k_B T} .$$

Why?

b) To evaluate $\langle E \rangle$ explicitly, write $\langle E(v) \rangle = hvN(v)/D(v)$, with

$$N(\nu) = \sum_{j=0}^{\infty} j e^{-jh\nu/k_B T}$$
; $D(\nu) = \sum_{j=0}^{\infty} e^{-jh\nu/k_B T}$

i) Show that:

$$D(v) = [1 - e^{-hv/k_BT}]^{-1}$$

[Hint: D is a simple geometric series.]

ii) Show that

$$N(v) = \frac{-k_B T}{h} \partial D(v) / \partial v$$

iii) Combine the results of i) and ii) to obtain Eq. 1.5 of Engel.