August 30, 2007

Chem. 1410

Problem Set 1, due Sept. 10, 2007

Do the following problems from Engel; these are not to be handed in for grading; solutions will be distributed via .pdf.

Chapter 1: P1.2, P1.7, P1.12, P1.17, P1.19
The following two problems are to be handing in for grading:
(1) Density of states of electromagnetic modes in a blackbody cavity: In class we asserted that at absolute temperature T the density of electromagnetic states ("modes") inside a blackbody is

$$
\begin{equation*}
D_{\lambda}(\lambda)=\frac{8 \pi}{\lambda^{4}} \tag{1}
\end{equation*}
$$

(Note: the units of $D_{\lambda}(\lambda)$ are "\# modes/[unit volume][unit wavelength]".) This means that in a small wavelength interval $[\lambda-\Delta \lambda / 2, \lambda-\Delta \lambda / 2]$, the number of electromagnetic modes per unit volume is $D_{\lambda}(\lambda) \Delta \lambda$. Show that Eq. [1] is equivalent to the following density of states in frequency space:

$$
\begin{equation*}
D_{v}(v)=8 \pi v^{2} / c^{3} \tag{2}
\end{equation*}
$$

where c is the speed of light. (Note: the units of $D_{v}(v)$ are "\# modes/[unit volume][unit frequency]".)

The following remarks may be of use:
i) $v=c / \lambda$.
ii) $D_{\lambda}(\lambda) \Delta \lambda=D_{v}(v) \Delta v$, where $\Delta \lambda$ is a small wavelength interval and Δv is the corresponding small frequency interval. [Why?]

Note: Eq. [2] is employed directly in Engel Eq. 1.1.
2) Average thermal energy in a harmonic oscillator. According to the principles of statistical physics, the relative probability to find a system in state j characterized by energy E_{j} is $\exp \left(-E_{j} / k_{B} T\right)$, where T is the absolute temperature and k_{B} is Boltzmann's constant.
a) In the case where the system is an electromagnetic cavity mode frequency v, the allowed states $\mathrm{j}=0,1,2, \ldots$ correspond to energy $E_{j}=j h \nu$ (i.e,. $0,1,2, \ldots$ photons in the mode). Thus, the average thermal energy of a cavity mode of frequency v at absolute temperature T is given by:

$$
<E(v)>=h \nu \sum_{j=0}^{\infty} j e^{-j h \nu / k_{B} T} / \sum_{j=0}^{\infty} e^{-j h \nu / k_{B} T} .
$$

Why?
b) To evaluate $\langle E\rangle$ explicitly, write $\langle E(v)\rangle=h v N(v) / D(v)$, with

$$
N(v)=\sum_{j=0}^{\infty} j e^{-j h \nu / k_{B} T} ; \quad D(v)=\sum_{j=0}^{\infty} e^{-j h \nu / k_{B} T}
$$

i) Show that:

$$
D(v)=\left[1-e^{-h \nu / k_{B} T}\right]^{-1}
$$

[Hint: D is a simple geometric series.]
ii) Show that

$$
N(v)=\frac{-k_{B} T}{h} \partial D(v) / \partial v
$$

iii) Combine the results of i) and ii) to obtain Eq. 1.5 of Engel.

