Sept. 10, 2007

## Chem. 1410

Problem Set 2, due Sept. 17, 2007

Do the following problems from Engel; these are not to be handed in for grading; solutions will be distributed via .pdf.

Chapter 1: P2.5, P2.10, P2.15, P2.18, P2.23, P.2.30
The following two problems are to be handing in for grading:
(1) Fundamental Commutation Relation. Show that for an arbitrary (differentiable) function $F(x)$ :

$$
\begin{equation*}
[\hat{x} \hat{p}-\hat{p} \hat{x}] F(x)=i \hbar F(x) \tag{1}
\end{equation*}
$$

Note: $\hat{x} \hat{p} F(x)=\frac{\hbar}{i} x \partial F(x) / d x ; \hat{p} \hat{x} F(x)=\frac{\hbar}{i} \partial[x F(x)] / d x$.
(Since Eq. 1 holds for any $F(x)$, we can say that $[\hat{x} \hat{p}-\hat{p} \hat{x}]=i \hbar$. This is known as the fundamental commutation relation, which is discussed further in Engel Chapt. 6.)
(2) Fourier Series. Consider the function $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)$, i.e., a unit normed Gaussian of width $\sigma$. Here we will carry out a Fourier series expansion of this function on the fundamental interval $[-\pi, \pi]$. That is, consider the expansion:

$$
f_{N}(x)=a_{0}+\sum_{j=1}^{N}\left[b_{j} \sin (j x)+c_{j} \cos (j x)\right]
$$

In the limit $N \rightarrow \infty$, and with the superposition coefficients chosen appropriately, then according to Fourier's Theorem $f_{N}(x) \rightarrow f(x)$ on the interval $[-\pi, \pi]$, and generates periodically repeating replicas of $f(x)$ on the interval $[-3 \pi,-\pi],[\pi, 3 \pi]$, etc.

Recall the formula for determining the superposition coefficient:

$$
\begin{equation*}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d x f(x) ; b_{j}=\frac{1}{\pi} \int_{=\pi}^{\pi} d x f(x) \sin (j x) ; c_{j}=\frac{1}{\pi} \int_{-\pi}^{\pi} d x f(x) \cos (j x) \tag{2}
\end{equation*}
$$

a) Show that $b_{j}=0$ for all $j=1,2, \ldots$
b) To evaluate $a_{0}$ and $c_{j}$, let us specialize to the case that $\sigma \ll \pi$, i.e. the Gaussian is well-localized in the interval $[-\pi, \pi]$. Then we can extend the integrals in Eq. 2 from $-\infty$ to $\infty$. [Why?]
c) Now, using the integral identity $\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{\infty} d x \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right) \cos (\gamma x)=\exp \left(-\gamma^{2} \sigma^{2} / 2\right)$, show that:
i) $a_{0}=\frac{1}{2 \pi}$
ii) $c_{j}=\frac{1}{\pi} \exp \left(-j^{2} \sigma^{2} / 2\right), \quad j=1,2, \ldots$
d) Consider the numerical value of $\sigma=0.5$. This is the case that was plotted in the Supplemental notes. Plot $f(x), f_{2}(x), f_{6}(x)$ on the same graph. Verify that the Fourier series converges to the exact function by roughly $N=6$.
e) Finally, consider the numerical value $\sigma=0.25$. (This Gaussian is twice as narrow as that considered in part d.) Is the Fourier series converged by $N=6$ in this case? If not, what value of $N$ (roughly) is required for convergence? Can you give a qualitative reason for the trend you observe in the relation between the narrowness of the function $f(x)$ and the number of Fourier components (value of $N$ ) required to represent it accurately via a Fourier series?

