Sept. 17, 2007
Chem. 1410
Problem Set 3, due Sept. 24, 2007

Do the following problems from Engel; these are not to be handed in for grading; solutions will be distributed via .pdf.

Chapter 4: 4.5, 4.10, 4.15, 4.17, 4.23
The following three problems are to be handing in for grading:
(1) Uncertainty Product. Consider a quantum mechanical wavefunction of the form:

$$
\begin{equation*}
\psi(x)=\frac{1}{\left[2 \pi \sigma^{2}\right]^{1 / 4}} \exp \left(\frac{-x^{2}}{4 \sigma^{2}}\right) \tag{1}
\end{equation*}
$$

a) Verify that $\psi(x)$ is normalized properly in the quantum mechanical sense, i.e., show that $\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1$.

Note:
i) Since $\psi(x)$ is a real-valued function, $\psi(x)=\psi^{*}(x)$ here.
ii) $\frac{1}{\left[2 \pi \sigma^{2}\right]^{1 / 2}} \int_{-\infty}^{\infty} d x \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)=1$ for any real number σ.
b) Show that $\langle x\rangle=0$, and $\langle p\rangle=0$ for this $\psi(x)$.

Note: $\langle A\rangle \equiv \int_{-\infty}^{\infty} d x \psi^{*}(x) \hat{A} \psi(x)$, where \hat{A} is the quantum mechanical operator corresponding to observable A.
c) Show that $\left\langle x^{2}\right\rangle=\sigma^{2}$ here.

Note: $\frac{1}{\left[2 \pi \sigma^{2}\right]^{1 / 2}} \int_{-\infty}^{\infty} d x \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right) x^{2}=\sigma^{2}$ for any real number σ.
d) Show that $\left\langle p^{2}\right\rangle=\alpha \hbar^{2} / \sigma^{2}$ for the wavefunction considered in Eq. 1, where α is a numerical coefficient that you are to compute.

Hint: All of the non-zero integrals needed to evaluate α are given above.
e) For a system represented by a general state function $\psi(x)$, the "uncertainty" in a quantum mechanical observable A is defined as $\delta A \equiv \sqrt{\left.\langle(A-<A)>)^{2}\right\rangle}$. Thus, using the results obtained above, show that for $\psi(x)$ in Eq. 1 :

$$
\delta x \delta p=\sqrt{\alpha} \hbar
$$

f) It can be shown (you do not have to do this here!) that $\delta x \delta p \geq \hbar / 2$ for any physically admissible state function. Is the result obtained in part e) for the particular (Gaussian) state function specified in Eq. 1 consistent with the fundamental inequality just stated?
(2) Probability Distribution for a Particle in a Box. A particle of mass m moves in a one dimensional box whose width is L. Suppose that the particle is prepared in eigenstate n of the box (with $n=1,2,3, \ldots$). Deduce a formula for the probability that a measurement of the system will find the particle in the middle third of the box. Evaluate your formula explicitly for the cases that $\mathrm{n}=1$ (the ground state of the system) and $n=3$. What is the limiting value of this probability as $n \rightarrow \infty$?

(3) Engel, P4.25.

