1) Position Matrix Elements of the Harmonic Oscillator

Focus first on I_{1}, i.e.:

$$
\begin{aligned}
I_{1} & =\int_{-\infty}^{\infty} d x\left\{\frac{1}{\sqrt{2}}\left[\frac{m \omega}{\pi \hbar}\right]^{1 / 4} \cdot 2 \sqrt{\frac{m \omega}{\hbar}} x \cdot \exp \left(-m \omega x^{2} / 2 \hbar\right)\right\} x\left\{\left[\frac{m \omega}{\pi \hbar}\right]^{1 / 4} \exp \left(-m \omega x^{2} / 2 \hbar\right)\right\} \\
& =\sqrt{\frac{2 m \omega}{\hbar}} \cdot\left[\frac{m \omega}{\pi \hbar}\right]^{1 / 2} \int_{-\infty}^{\infty} d x \exp \left(-m \omega x^{2} / \hbar\right) x^{2} \\
& =\sqrt{\frac{2 m \omega}{\hbar}} \cdot \frac{\hbar}{2 m \omega}=\sqrt{\frac{\hbar}{2 m \omega}}
\end{aligned}
$$

[Note: to go from $2^{\text {nd }}$ to $3^{\text {rd }}$ lines, use the given Gaussian integral identity with $\sigma^{2}=\frac{\hbar}{2 m \omega}$.]
For I_{0} the polynomial factor x^{2} in integral above (for I_{1}) is replaced by x (to within an overall scale factor). Hence the integrand is odd and $I_{0}=0$. Similarly, in I_{2} there is a polynomial factor of the form $A x^{3}+B x$, where A, B are constants. Hence the integrand is odd and $I_{2}=0$.
(2) Particle in a 2D Box

An acceptrable oneyg aigenfucta. mosst (i) satisfy the Schiodingen F_{i}.
Iwide the box, th: reabs:

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right] \psi(x, y)=E \psi(x, y)
$$

(ii) satisfy appropriate boundory condition. Here, we insist that $\psi(x, y)=0$ alarg all edges of the box.

Thur the aftrot riate exergy aigenfentions are: $\psi_{n_{m i}}(x, y)=\left(\frac{2}{L}\right) \sin \left(\frac{n_{x} \pi}{L}\right) \sin \left(\frac{n_{y} \pi}{L}\right) ; n_{x}=1,2,3, \cdots$ $n_{y}=1,2,3, \ldots$
nomalisation facto.

Concep ading annyy eiganuluea: $E_{n_{x, n}, y}=\frac{h^{2}}{8 m_{m} b^{2}}\left(n_{x}^{2}+n_{y}^{2}\right)$
So,...
(a) (i) $\sin (\pi \times 14) \sin (3 \pi y / L)$ (umorindizal)
(a) (i) $\sin (\pi x / L) \sin (3 \pi y / L) \frac{\text { is an anvery eigenfuxtin. coussboncing to } n_{x}=1}{\Lambda} n_{y}=3,00 \quad E_{1,3}=\left(\frac{h^{2}}{8 \mathrm{~m} L^{2}}\right) \cdot 10$

(iii) $\quad \cos (\pi x / \omega) \sin (4 \pi y / L)$ is not an anengy ciganfurta, it doenn't vaxish avayubere along the edge $x=0$
(b) Eneagy diagnam:

((3) ID Harmonic Oscillator and Basic Quantum

Measurement principles

$$
\begin{aligned}
& \text {; } E_{0}=\frac{1}{2} \hbar \omega
\end{aligned}
$$

(b) $\psi_{1}(x)=\frac{1}{\sqrt{2}}\left(\frac{m \omega}{T \pi}\right)^{\frac{1}{4}} H_{1}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) e^{-m \omega x^{2} / 2 k}$,,$H_{1}(y) \equiv 2 y=$ Hamik plymaxice" $H_{1}^{\prime \prime}$
(c) (i) $P_{0} \equiv$ Probalitity thet a mecrumement of enengy yieless $E_{0}=(.949)^{2}=0.9$

$$
I_{1}=(3,6)^{2}=0.1 ; \quad I_{2}=0
$$

(ii) $\langle E\rangle=P_{0} E_{0}+P_{1} E_{1}=.9\left(\frac{1}{2} \hbar \omega\right)+.1\left(\frac{3}{2} \hbar \omega\right)=0.6 \hbar \omega$

P 7. 1) (enclile The force constant for a $\mathrm{H}^{19} \mathrm{~F}$ molecule is $966 \mathrm{Nm}^{-1}$.
a) Calculate the zero point vibrational energy for this molecule for a harmonic potential.
b) Calculate the light frequency needed to excite this molecule from the ground state to the first excited state.
a)

$$
\begin{aligned}
& E_{1}=h \sqrt{\frac{k}{\mu}}\left(1+\frac{1}{2}\right)=\frac{3}{2} \times 1.055 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times \sqrt{\frac{966 \mathrm{~N} \mathrm{~m}^{-1}}{\frac{1.0078 \times 18.9984}{1.0078+18.9984} \times 1.66 \mathrm{x}^{-27} 0^{-27} \mathrm{~kg} \mathrm{amu}^{-1}}} \\
& E_{1}=1.23 \times 10^{-19} \mathrm{~J} \\
& E_{0}=\hbar \sqrt{\frac{k}{\mu}}\left(\frac{1}{2}\right)=\frac{1}{3} E_{1}=4.10 \times 10^{-20} \mathrm{~J} \\
& \text { b) } \nu=\frac{E_{1}-E_{0}}{h}=\frac{1.23 \times 10^{-19} \mathrm{~J}-4.10 \times 10^{-20} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}}=1.24 \times 10^{14} \mathrm{~s}^{-1}
\end{aligned}
$$

P7.2 By substituting in the Schrödinger equation for the harmonic oscillator, show that the ground-state vibrational wave function is an eigenfunction of the total energy operator. Determine the energy eigenvalue.

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 \mu} \frac{d^{2} \psi_{n}(x)}{d x^{2}}+\frac{k x^{2}}{2} \psi_{n}(x)=E_{n} \psi_{n}(x) \\
& -\frac{\hbar^{2}}{2 \mu} \frac{d^{2}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}}{d x^{2}}+\frac{k x^{2}}{2}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{\frac{1}{2} \alpha x^{2}}=\frac{\hbar^{2}}{2 \mu} \frac{d\left\{\alpha x\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}\right\}}{d x}+\frac{k x^{2}}{2}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}} \\
& =\frac{\hbar^{2}}{2 \mu}\left\{\alpha\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}-\alpha^{2} x^{2}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}\right\}+\frac{k x^{2}}{2}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{\frac{1}{2} \alpha x^{2}} \\
& =\frac{\hbar^{2}}{2 \mu}\left\{\alpha\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}-\alpha^{2} x^{2}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}\right\}+\frac{\hbar^{2} \alpha^{2} x^{2}}{2 \mu}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}=\frac{\hbar^{2}}{2 \mu} \alpha\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}} \\
& =\frac{\hbar^{2}}{2 \mu} \sqrt{\frac{k \mu}{\hbar^{2}}}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}=\frac{\hbar}{2} \sqrt{\frac{k}{\mu}}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \alpha x^{2}}=E_{1} \psi_{1}(x) \text { with } E_{1}=\frac{\hbar}{2} \sqrt{\frac{k}{\mu}}
\end{aligned}
$$

P7.4)

Th (uvu* Evaluate the average kinetic and potential energies, $\left\langle E_{\text {kinetic }}\right\rangle$ and $\left\langle E_{\text {potential }}\right\rangle$, for the ground state $(n=0)$ of the harmonic oscillator by carrying out the appropriate integrations.
We use the standard integrals $\int_{0}^{\infty} x^{2 n} e^{-a x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n+1} a^{n}} \sqrt{\frac{\pi}{a}}$ and

$$
\begin{aligned}
\int_{0}^{\infty} e^{-\alpha x^{2}} d x & =\left(\frac{\pi}{4 a}\right)^{1 / 2} \\
\left\langle E_{\text {potential }}\right\rangle= & \int \psi_{0}^{\cdot}(x)\left(\frac{1}{2} k x^{2}\right) \psi_{0}(x) d x \\
= & \frac{1}{2} k\left(\frac{\alpha}{\pi}\right)^{1 / 2} \int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} d x=k\left(\frac{\alpha}{\pi}\right)^{1 / 2} \int_{0}^{\infty} x^{2} e^{-\alpha x^{2}} d x \\
= & k\left(\frac{\alpha}{\pi}\right)^{1 / 2} \frac{1}{4 \alpha} \sqrt{\frac{\pi}{\alpha}}=k \frac{1}{4 \alpha}=\frac{\hbar}{4} \sqrt{\frac{k}{\mu}} \\
\left\langle E_{\text {kinetic }}\right\rangle= & \int \psi_{0}^{\dot{0}}(x)\left(-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}\right) \psi_{0}(x) d x \\
= & \int_{-\infty}^{\infty}\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{\frac{1}{2} \alpha x^{2}}\left(-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}\right)\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{\frac{1}{2} \alpha x^{2}} d x \\
& =-\frac{\hbar^{2}}{\mu}\left(\frac{\alpha}{\pi}\right)^{1 / 2 \infty} \int_{0}^{-\alpha x^{2}}\left(\alpha x^{2}-\alpha\right) d x \\
& =-\frac{\hbar^{2}}{\mu}\left(\frac{\alpha}{\pi}\right)^{1 / 2}\left(\frac{\alpha}{4} \sqrt{\frac{\pi}{\alpha}}-\frac{\alpha}{2} \sqrt{\frac{\pi}{\alpha}}\right)=\frac{\hbar^{2}}{\mu} \frac{\alpha}{4} \\
& =\frac{\hbar^{2}}{4 \mu} \sqrt{\frac{k \mu}{\hbar^{2}}}=\frac{\hbar}{4} \sqrt{\frac{k}{\mu}}
\end{aligned}
$$

