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(0) a) In region II (inside the box), the Schrödinger Eq. reads: 
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  [Region II] 

The solutions to this diff. eq. are (modulo normalization factor) exp( ( ) ),exp( ( ) )ik E x ik E x− ; or, 

equivalently, sin( ( ) ),cos( ( ) )k E x k E x , with ( ) 2 /k E mE≡ � .   

In regions I,III (outside the box), the Schrödinger Eq. reads: 
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  [Regions I,III] 

The solutions to this diff. eq. for 0E V<  are (modulo normalization factor) 

exp( ( ) ),exp( ( ) )E x E xκ κ− , with 0( ) 2 ( ) /E m V Eκ ≡ − � . 

Now, in region III, the exp( ( ) )E xκ  term must be disregarded (it blows up as x → ∞ ).  In region 
II, thecos( ( ) )k E x  must be discarded, since we are seeking odd-parity solutions.  Thus 

( ) sin( )II x kxψ = .  (We can choose the scale factor in front of the sin function to be 1, since we 

are not concerned here with the overall normalization of the eigenfunction.)  And: 
( ) x

III x Ae κψ −= .  [Note: the scale factor A is not arbitrary in this region, but must be chosen so 

that ( )xψ  is continuous at / 2x a= .]  Finally, in region I, the exp( ( ) )E xκ−  term must be 

discarded (it blows up asx → −∞ ).  Thus we obtain ( ) x
I x Aeκψ = − . [Note: If a particular 

constant A “works” for the matching of solutions at / 2x a= , then –A will work at / 2x a= − , 
and the overall eigenfunction ( )xψ  will have odd parity.] 

b) Match , /d dxψ ψ  at x=a/2: 

(i) ( / 2) :aψ                         sin( / 2) exp( / 2)ka A aκ= −

(ii) ( / 2) / :d a dxψ              cos( / 2) exp( / 2)k ka A aκ κ= − −

Dividing (ii)/(i) leads to the equation:  cot( / 2) /ka kκ= − .   

Then, utilizing the definition of ,k κ  noted above, we obtain:  02
cot( )

2
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E

−
= −

�
, QED. 

[Note: performing the same matching process at x=-a/2 leads to the same quantization 
condition.] 
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c) Converting the quantization condition obtained in b) to the dimensionless form  

                           0cot( )
2

v επ ε
ε
−

− =                  [A1] 

(see the PS statement for the definition of 0v ), we plot the l.h.s. vs. the r.h.s. of this equation for 

0 30v =  in Fig. A1: 
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Fig. A1. l.h.s. of Eq. A1: solid black line; r.h.s. of Eq. A1: 
dotted blue line. [Dashed green lines indicate the values 

4,16ε = .]  Note maximum abscissa value is 30ε = . 

From Fig. A1, we see that there are 3 intersections of the l.h.s. and r.h.s. of Eq. A1 in the range 

00 vε< < , and thus there are 3 odd-parity eigenfunctions confined within this bos. 



(1) Basic Principles of Rotational Spectra



    (2) Quantum Mechanical Tunneling through a 1D Potential Energy Barrier: 








