P&. /5" ) A strong absorption band in the infrared region of the e]ectrpmagnet?c spectrum
is observed at ¥ =2170 cm™' for *C'°0. Assuming that the harmonic p.otent_lal applu_:s,
calculate the fundamental frequency v in units of inverse seconds, the vibrational period
in seconds, and the zero point energy for the molecule in joules and electron-volts.

Chem 1410

y=1c=2170cm™ x3.00%10%cms™ = 6.51x10"s™ PS 6, Solution

i | 14 key
F=—==——————=1.54X10""s
Ty 6.51x10%s” "

6.241x10"%eV

E =ihv=l><6.626x10‘“15x6.s1><10”s" = 2.16x10‘2°Jx—7j =0.134eV
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P8.7

A measurement of the vibrational energy levels of '>C'%0 gives the relationsiir

=,
v(n)=2 1?0.21[;1 + %] cm™ —13.461 (n + %} cm™ where 7 is the vibrational quantum

s

number. The fundamental vibrational frequency is Vo =2170.21cm™. From these data,

calculate the depth D, of the Morse potential for 2C'*0. Calculate the bond energy of
the molecule.

We convert the expression to one in terms of energy

e

E(n)=217021%he n+l -13.461x he J?+l
2 2

and compare it with Equation (19.5) for the Morse potential.

N () 1Y
EHZIIV[H‘FE‘)_"E .’”I+‘:'2‘

from which we see that

3
13,4615 e = (1Y)
4D

e

B h/ B hev?
T 4x13.461xc  4x13.461

6.626x107*7 5x2.998x10"cm 5™ (2170 em™)’
o 4x13.461

e

=1.738x107"*J

D s ——;—hcffn =1.738 % 10'”}~—;~><6.626>< 107 $%2.998x10°cm s™ x 2170 cm™
=1.717x107"J

The bond energy per mole is DpN, = 1.034x 10° kJ mol ™.

PE.lé

Calculate the moment of inertia, the magnitude of the rotational angular
ml}lmel?mm, and the energy in the J = | rotational state for ng in which the bond length
of 'Hy is 74.6 pm. The atomic mass of 'H is 1.007825 amu.



,  1.007825% amu
I=pur =

2x1.007825
=4.657x10™ kg m’
= (T +1)h=v2%1.0554x107] s =1.4914x107"J 5

=1.49x10kgms™

X1.660540210 kgamu™ x (74.6x 10" m)

J(r+0R 2x(1.0554x10%Ts)’ ——
== s =239x107
’ 21 2x4.657x10 kg m’ &




(0) i) For ICN N=#atoms=3, and, since it is a lineaolecule n,=# vibrational degrees of
freedom (normal modes of vibration)= 3N-5 = 4.

i) For CH, N=5, and, since it is a nonlinear molecuig,= 3N-6 = 9.

(1) From class notes, we know; = X —%F

o —wam_ .
, X, =X +—=r. Thus:
% M

2 2
an R X ke
—EM;(2 +%,ur2 ,QED

Note: Herea(b is the dot product between two 3D vectarb , anda? =a[&.

(2) a). Assume the desired energy eigenfunction ban written in the product form
Y, 0,9)=R ()Y, (@,9) whereY,  is the standard spherical harmonic function, &) is a

radial function to be determined. [Note: We anttéthat it will depend on the valuelah the
companion spherical harmonic.]

Note the following useful version of the 3D Lapktioperator:

2 A2
_lo°(r )+/\

2 ,
r or? r?

where the “Legendrian”

n 2
N? :—_1 i(sinﬁa )+ 12 9
sind 06 00 ~ sin"8o¢’

operates (obviously) on the anglgs@). Substituting all this into the Schrodinger EQ.:



-t J19°(r ) A _
{2;1{? o2 r}+V(r)}R(r)\ﬂm(9,¢)—EP.(r)Ym(H,co) [Al]

Now, using the fact that the spherical harmonies eigenfunction of the Legendrian, namely
/\z\qm G8,¢9)=-1(1+2)Y,,(6,9), Eq. Al implies the radial wave equation:

—n* 10°(rR(r)) ,
2ur  or?

R+
( )+ ’}R( )=ER (1)
2ur’?
Finally, defining the reduced radial wavefunctigy(r) according torR (r) = x,(r) , we obtain a

“standard” 1D Schrodinger Eq. for the reduced Had&ve function:

—h* 9’ X (r)
2u  or?

VT (DX () =Ex (r),

with the effective radial potentiaf® (r) = v(r) +

w1 +1)
> , QED.

veff(r)

2

Fig AL v (r)=v(r)+ L -
2ur

r, (with the

harmonic oscillator form ofv(r) stated above).
Parameters arec = 4 =1,r, = 2.
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b) Adding the repulsive “centrifugal” potential ter o to v(r):%/((r—req)2 pushes the
r

equilibrium position of the potential wel™ (r)out to a larger value; cf. Fig. Al. Thus,
increasingl increases the equilibrium separation of the two particlesha diatomic.



