is observed at $\tilde{v}=2170 \mathrm{~cm}^{-1}$ for ${ }^{12} \mathrm{C}^{16} \mathrm{O}$. Assuming that the harmonic potential applies, calculate the fundamental frequency v in units of inverse seconds, the vibrational period in seconds, and the zero point energy for the molecule in joules and electron-volts.

$$
\begin{aligned}
& v=\tilde{v} c=2170 \mathrm{~cm}^{-1} \times 3.00 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}=6.51 \times 10^{13} \mathrm{~s}^{-1} \\
& T=\frac{1}{v}=\frac{1}{6.51 \times 10^{13} \mathrm{~s}^{-1}}=1.54 \times 10^{-14} \mathrm{~s} \\
& E=\frac{1}{2} h v=\frac{1}{2} \times 6.626 \times 10^{-34} \mathrm{Js} \times 6.51 \times 10^{13} \mathrm{~s}^{-1}=2.16 \times 10^{-20} \mathrm{~J} \times \frac{6.241 \times 10^{18} \mathrm{eV}}{\mathrm{~J}}=0.134 \mathrm{eV}
\end{aligned}
$$

Chem 1410
PS 6, Solution
key

P8. 7
A measurement of the vibrational energy levels of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ gives the relationship $\tilde{v}(n)=2170.21\left(n+\frac{1}{2}\right) \mathrm{cm}^{-1}-13.461\left(n+\frac{1}{2}\right)^{2} \mathrm{~cm}^{-1}$ where n is the vibrational quantum number. The fundamental vibrational frequency is $\bar{\nu}_{0}=2170.21 \mathrm{~cm}^{-1}$. From these data, calculate the depth D_{e} of the Morse potential for ${ }^{12} \mathrm{C}^{16} \mathrm{O}$. Calculate the bond energy of the molecule.

We convert the expression to one in terms of energy

$$
E(n)=2170.21 \times h c\left(n+\frac{1}{2}\right)-13.461 \times h c\left(n+\frac{1}{2}\right)^{2}
$$

and compare it with Equation (19.5) for the Morse potential.

$$
E_{n}=h \nu\left(n+\frac{1}{2}\right)-\frac{(h \nu)^{2}}{4 D_{e}}\left(n+\frac{1}{2}\right)^{2}
$$

from which we see that

$$
\begin{aligned}
& 13.461 \times h c=\frac{(h v)^{2}}{4 D_{e}} \\
& D_{e}=\frac{h v^{2}}{4 \times 13.461 \times c}=\frac{h c \tilde{v}^{2}}{4 \times 13.461} \\
& =\frac{6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 2.998 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1} \times\left(2170 \mathrm{~cm}^{-1}\right)^{2}}{4 \times 13.461}=1.738 \times 10^{-18} \mathrm{~J} \\
& D_{0}=D_{e}-\frac{1}{2} h c \tilde{v}_{0}=1.738 \times 10^{-18} \mathrm{~J}-\frac{1}{2} \times 6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \times 2.998 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1} \times 2170 \mathrm{~cm}^{-1} \\
& =1.717 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

The bond energy per mole is $D_{0} N_{A}=1.034 \times 10^{3} \mathrm{~kJ} \mathrm{~mol}^{-1}$. momentum, and the energy in the $J=1$ rotational state for ${ }^{1} \mathrm{H}_{2}$ in which the bond length of ${ }^{1} \mathrm{H}_{2}$ is 74.6 pm . The atomic mass of ${ }^{1} \mathrm{H}$ is 1.007825 amu .

$$
9 \begin{aligned}
I & =\mu r_{0}^{2}=\frac{1.007825^{2} \mathrm{amu}}{2 \times 1.007825} \times 1.6605402 \times 10^{-27} \mathrm{~kg} \mathrm{amu}^{-1} \times\left(74.6 \times 10^{-12} \mathrm{~m}\right)^{2} \\
& =4.657 \times 10^{-48} \mathrm{~kg} \mathrm{~m}^{2} \\
|J| & =\sqrt{J(J+1) \hbar}=\sqrt{2} \times 1.0554 \times 10^{-34} \mathrm{~J} \mathrm{~s}=1.4914 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& =1.49 \times 10^{-34} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2} \\
E_{j} & =\frac{J(J+1) \hbar^{2}}{2 I}=\frac{2 \times\left(1.0554 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}}{2 \times 4.657 \times 10^{-48} \mathrm{~kg} \mathrm{~m}^{2}}=2.39 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

(0) i) For ICN N=\#atoms=3, and, since it is a linear molecule $n_{v}=\#$ vibrational degrees of freedom (normal modes of vibration) $=3 \mathrm{~N}-5=4$.
ii) For $\mathrm{CH}_{4}, \mathrm{~N}=5$, and, since it is a nonlinear molecule, $n_{v}=3 \mathrm{~N}-6=9$.
(1) From class notes, we know: $\vec{x}_{1}=\vec{X}-\frac{m_{2}}{M} \vec{r}, \vec{x}_{2}=\vec{X}+\frac{m_{1}}{M} \vec{r}$. Thus:

$$
\begin{aligned}
T & =\frac{1}{2} m_{1} \overrightarrow{\dot{x}}_{1}^{2}+\frac{1}{2} m_{2} \overrightarrow{\dot{x}}_{2}^{2} \\
& =\frac{1}{2} m_{1}\left(\dot{\vec{X}}-\frac{m_{2}}{M} \dot{\vec{r}}\right)^{2}+\frac{1}{2} m_{2}\left(\dot{\vec{X}}+\frac{m_{1}}{M} \dot{\vec{r}}\right)^{2} \\
& =\frac{1}{2} m_{1}\left(\dot{\vec{X}}^{2}-\frac{2 m_{2}}{M} \dot{\vec{r}} \cdot \dot{\vec{X}}+\frac{m_{2}^{2}}{M^{2}} \dot{\vec{r}}^{2}\right)+\frac{1}{2} m_{2}\left(\dot{\vec{X}}^{2}+\frac{2 m_{1}}{M} \dot{\vec{r}} \cdot \dot{\vec{X}}+\frac{m_{1}^{2}}{M^{2}} \dot{\vec{r}}^{2}\right) \\
& =\frac{1}{2} M \overrightarrow{\dot{X}}^{2}+\frac{1}{2} \mu \overrightarrow{\dot{r}}^{2} \quad, Q E D .
\end{aligned}
$$

Note: Here $\vec{a} \cdot \vec{b}$ is the dot product between two 3D vectors \vec{a}, \vec{b}, and $\vec{a}^{2}=\vec{a} \cdot \vec{a}$.
(2) a). Assume the desired energy eigenfunction can be written in the product form $\psi(r, \theta, \phi)=R_{l}(r) Y_{l m}(\theta, \phi)$ where $Y_{l m}$ is the standard spherical harmonic function, and $R_{l}(r)$ is a radial function to be determined. [Note: We anticipate that it will depend on the value of l in the companion spherical harmonic.]

Note the following useful version of the 3D Laplacian operator:

$$
\nabla^{2}=\frac{1}{r} \frac{\partial^{2}(r \quad)}{\partial r^{2}}+\frac{\hat{\Lambda}^{2}}{r^{2}},
$$

where the "Legendrian"

$$
\hat{\Lambda}^{2}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

operates (obviously) on the angles $(\boldsymbol{\theta}, \boldsymbol{\phi})$. Substituting all this into the Schrödinger Eq.:

$$
\left[\frac{-\hbar^{2}}{2 \mu}\left\{\frac{1}{r} \frac{\partial^{2}(r}{\partial r^{2}}+\frac{\hat{\Lambda}^{2}}{r^{2}}\right\}+v(r)\right] R_{l}(r) Y_{l m}(\theta, \phi)=E R_{l}(r) Y_{l m}(\theta, \phi) \quad[\mathrm{A} 1]
$$

Now, using the fact that the spherical harmonics are eigenfunction of the Legendrian, namely $\hat{\Lambda}^{2} Y_{l m}(\theta, \phi)=-l(l+1) Y_{l m}(\theta, \phi)$, Eq. A1 implies the radial wave equation:

$$
\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}\left(r R_{l}(r)\right)}{\partial r^{2}}+\left(v(r)+\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}\right) R_{l}(r)=E R_{l}(r)
$$

Finally, defining the reduced radial wavefunction $\chi_{l}(r)$ according to $r R_{l}(r)=\chi_{l}(r)$, we obtain a "standard" 1D Schrödinger Eq. for the reduced radial wave function:

$$
\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2} \chi_{l}(r)}{\partial r^{2}}+v_{l}^{e f f}(r) \chi_{l}(r)=E \chi_{l}(r),
$$

with the effective radial potential $v_{l}^{\text {eff }}(r) \equiv v(r)+\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}, Q E D$.

[^0]b) Adding the repulsive "centrifugal" potential term $\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}$ to $v(r)=\frac{1}{2} \kappa\left(r-r_{e q}\right)^{2}$ pushes the equilibrium position of the potential well $v_{l}^{\text {eff }}(r)$ out to a larger value; cf. Fig. A1. Thus, increasing l increases the equilibrium separation of the two particles in the diatomic.

[^0]: (
 r
 Fig A1. $v_{l}^{\text {eff }}(r) \equiv v(r)+\frac{L^{2}}{2 \mu r^{2}}$ vs r, (with the harmonic oscillator form of $v(r)$ stated above). Parameters are: $\kappa=\mu=1, r_{e}=2$.

