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(0) i) For ICN N=#atoms=3, and, since it is a linear molecule vn =# vibrational degrees of 

freedom (normal modes of vibration)= 3N-5 = 4. 

     ii) For CH4, N=5, and, since it is a nonlinear molecule, vn  = 3N-6 = 9. 

(1) From class notes, we know: 2
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Note: Here a b⋅
��

 is the dot product between two 3D vectors ,a b
��

, and 2a a a= ⋅� � �
. 

(2) a). Assume the desired energy eigenfunction can be written in the product form 
( , , ) ( ) ( , )l lmr R r Yψ θ φ θ φ=  where lmY  is the standard spherical harmonic function, and ( )lR r  is a 

radial function to be determined. [Note: We anticipate that it will depend on the value of l in the 
companion spherical harmonic.] 

Note the following useful version of the 3D Laplacian operator: 
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operates (obviously) on the angles ( , )θ φ .  Substituting all this into the Schrödinger Eq.: 
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Now, using the fact that the spherical harmonics are eigenfunction of the Legendrian, namely 
2ˆ ( , ) ( 1) ( , )lm lmY l l Yθ φ θ φΛ = − + , Eq. A1 implies the radial wave equation: 
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Finally, defining the reduced radial wavefunction ( )l rχ according to ( ) ( )l lrR r rχ= , we obtain a 

“standard” 1D Schrödinger Eq. for the reduced radial wave function: 
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with the effective radial potential 
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Fig A1. 
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harmonic oscillator form of ( )v r  stated above). 

Parameters are: 1, 2erκ µ= = = . 



3

b) Adding the repulsive “centrifugal” potential term 
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2 eqv r r rκ= −  pushes the 

equilibrium position of the potential well ( )eff
lv r out to a larger value; cf. Fig. A1. Thus, 

increasing l increases the equilibrium separation of the two particles in the diatomic. 


