Nov. 12, 2007
Chem. 1410
Problem Set 8, due Nov. 19, 2007

Do the following problems; these are not to be handed in for grading; solutions will be distributed via .pdf.

Engel Chapter 10: P10.3, P10.6, P10.9, P10.11, P10.14, P10.18

The following two problems are to be handing in for grading:

1) Slater Determinants and the 1s2s Electronic State Configuration of the He atom. Consider the 1s2s electronic configuration of the helium atom, viz., one electron is in a 1s-type orbital and the other is in a 2s-type orbital. One possible (unnormalized) Slater determinant for this configuration is:

$$
\left|\begin{array}{cc}
1 s(1) \alpha(1) & 2 s(1) \beta(1) \\
1 s(2) \alpha(2) & 2 s(2) \beta(2)
\end{array}\right|
$$

where $1 \mathrm{~s}(1)$ is a one-electron hydrogen 1 s orbital corresponding to coordinate $\vec{r}_{1}, \alpha(1)$ means that electron 1 is in a spin up state, etc.
a) Find 3 other possible Slater determinants of the same type.
b) Show that the 4 Slater determinants constructed in part a are equivalent to the following 4 spinorbitals:
i) $[1 s(1) 2 s(2)+1 s(2) 2 s(1)][\alpha(1) \beta(2)-\alpha(2) \beta(1)]$
ii) $[1 s(1) 2 s(2)-1 s(2) 2 s(1)] \alpha(1) \alpha(2)$
iii) $[1 s(1) 2 s(2)-1 s(2) 2 s(1)] \beta(1) \beta(2)$
iv) $[1 s(1) 2 s(2)-1 s(2) 2 s(1)][\alpha(1) \beta(2)+\alpha(2) \beta(1)]$
[Note: you may need to take linear combinations of the Slater determinants found in part a to generate some of the above terms.]

Comments: Note that each member of $i-i v$ is antisymmetric to the exchange of the electron labels, as it must be according to the Pauli Exclusion Principle. Term i differs from terms ii-iv in that its spatial factor
is symmetric to exchange of electron labels, while its spin factor is antisymmetric to exchange of electron labels: in terms ii-iv the situation is reversed. Term i is called a "singlet" state, while terms ii-iv are known as "triplet" states. They have different properties, including the spatial distribution of the electrons and the state energy.
2) Variational Principle Treatment of the He Atom Ground State. Recall that the Hamiltonian for He (nuclear charge $\mathrm{Z}=2$) is

$$
\widehat{H}=\frac{-\hbar^{2}}{2 m_{e}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right)-\frac{e^{2}}{2 \pi \varepsilon_{0}}\left(\frac{1}{r_{2}}+\frac{1}{r_{2}}\right)+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}
$$

where ∇_{1}^{2} is the Laplacian for electron $1, r_{1}$ is the distance of electron 1 from the nucleus, and r_{12} is the distance between the two electrons. In this problem, we'll consider a normalized variational trial function of the form $\psi_{T}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\varphi_{1}\left(r_{1} ; \xi\right) \varphi_{l s}\left(r_{2} ; \xi\right)$, where $\varphi_{l s}(r ; \xi)$ is a normalized hydrogenic orbital corresponding to nuclear charge ξ. Explicitly,

$$
\varphi_{l s}(r ; \xi)=\pi^{-1 / 2}\left(\xi / a_{0}\right)^{3 / 2} \exp \left(-\xi r / a_{0}\right)
$$

where a_{0} is the H -atom Bohr radius. We will regard ξ as a variational parameter and minimize $<\psi_{T}|\hat{H}| \psi_{T}>$ with respect to ξ in order to find the best approximation to the He ground state that can be obtained with a trial function of the adopted form.
(a) Show that the Hamiltonian can be rewritten as

$$
\hat{H}=\hat{h}_{1}(\xi)+\hat{h}_{2}(\xi)+(\xi-2) \frac{e^{2}}{4 \pi \varepsilon_{0}}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)+\frac{e^{2}}{4 \pi \varepsilon_{0} r_{12}}
$$

where $\hat{h}_{1}(\xi)$ is the hydrogenic Hamiltonian

$$
\hat{h}_{1}(\xi)=\frac{-\hbar^{2}}{2 m_{e}} \nabla_{1}^{2}-\frac{\xi e^{2}}{4 \pi \varepsilon_{0}} \frac{1}{r_{1}}
$$

and likewise for $\hat{h}_{2}(\xi)$.
(b) Show that

$$
<\psi_{T}\left|\hat{h}_{1}(\xi)+\hat{h}_{2}(\xi)\right| \psi_{T}>=-\xi^{2} e^{2} / 4 \pi \varepsilon_{0} a_{0}
$$

[Hint: $\phi_{1 s}\left(r_{1} ; \xi\right)$ is an eigenfunction of $\left.\hat{h}_{1}(\xi).\right]$
(c) By direct integration it is straightforward to show that $\left\langle\psi_{T}\right| r_{1}^{-1}\left|\psi_{T}\right\rangle=\xi / a_{0}$. Moreover, it is possible to evaluate $\left\langle\psi_{T}\right| r_{12}^{-1}\left|\psi_{T}\right\rangle=\frac{5 \xi}{8 a_{0}}$. Putting together these facts and the results of parts (a) and (b), show that

$$
E(\xi) \equiv<\psi_{T}|\hat{H}| \psi_{T}>=\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}\left\{-2 \xi^{2}+4(\xi-2) \xi+5 \xi / 4\right\}
$$

(d) Find the value of ξ for which $\mathrm{E}(\xi)$ is a minimum. This determines the variationally optimal approximation to both the ground state eigenfuction and energy level for He .
(e) Is $\xi<2$ or $\xi>2$? Interpret your result.
(f) What is the approximate ground state energy eigenvalue predicted by this calculation? Give your answer in eV. [Remember: $\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0}}=13.6 \mathrm{eV}$.] Compare your approximate solution to the known exact value of -79.0 eV . How good is the agreement?

