## Chemistry 1410, Hour Exam 1, Solution Key

- 1) a) Appeal to the 1D Particle in the Box (PinB) model for the single electron energy levels of the pi electrons in hexatriene. Furthermore: respect the Pauli Exclusion Principle, putting no more than two (spin-paired) electrons in each single-electron spatial state. This leads to the diagram shown in *Fig. A1*, and thus the conclusion that the highest energy pi electron goes into the PinB level n=3 when the system is in its electronic ground state configurations (electrons are packed into the lowest single-electron states possible without violating the Pauli Exclusion Principle).
- b) The lowest energy transition possible would be for an electron occupying n=3 to make a transition into the (previously unoccupied) level n=4. Denoting  $E_n$  as the PinB energy eigenvalue corresponding to level n, then  $\Delta E_{43} = E_4 E_3$  is the increase in electronic energy incurred when an electron makes the transition from  $n=3 \rightarrow n=4$ . This energy has to supplied by the absorbed photon, i.e.,  $E_{nh} = \Delta E_{43}$ .

Recall that for an electron moving in a 1D PinB,  $E_n = \frac{h^2}{8m_e L^2}$ , where  $m_e$  is the electron mass and L is

the effective box length. Using the same arguments used for butadiene (cf. Fig. 1 on the exam) and octatetraene (see class notes), we arrive at the approximation for all-trans hexatriene (with 6 carbon atoms) that  $L \cong 6R$ , with R being the effective average C-C bond length: cf. Fig. A2. Now we can calculate:

$$E_{ph} = \Delta E_{43} = \frac{h^2}{8m_e (6R)^2} [4^2 - 3^2] = \frac{7}{36} \frac{h^2}{8m_e R^2}$$

Thus:  $\alpha = 7/36 \cong 0.194$ .

c) Since 
$$\frac{h^2}{8m_eR^2} = 1.6 \times 10^5 \text{cm}^{-1}$$
, then the absorbed photon energy is  $E_{ph} = \frac{7}{36} \cdot 1.6 \times 10^5 \, cm^{-1} = 3.1 \times 10^4 \, cm^{-1}$ . This corresponds to a wavelength of  $[3.1 \times 10^4]^{-1} \, cm = 3.23 \times 10^{-5} \, cm = 3,233 \, \text{Å}$ .



Fig. A1. Ground electronic state configuration for all-trans hexatriene, assuming a 1D Particle in a Box model for the single electron states.



Fig. A2. Mapping the all-trans hexatriene molecule to a 1D Particle in a Box: determining the box length L=5R+2(R/2)=6R.



3) a) For a generic 1D harmonic oscillator characterized by mass m and force constant k, the allowed energy eigenvalues are given by  $E_n=(n+\frac{1}{2})\hbar\omega$ , n=0,1,2,..., with  $\omega\equiv\sqrt{k/m}$ . The energy of the  $2^{\rm nd}$  excited state thus corresponds to n=2, or  $E_2=\frac{5}{2}\hbar\omega$ .

b) From the class notes (or Engel textbook), the energy eigenfunction corresponding to  $\boldsymbol{E}_2$  is

$$\psi_2(x) = \frac{1}{2\sqrt{2}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} H_2\left(\sqrt{\frac{m\omega}{\hbar}}x\right) \exp\left\{-\frac{m\omega}{2\hbar}x^2\right\}$$

with Hermite polynomial  $H_2(y) \equiv 4y^2 - 2$ .

A sketch is provided in Fig. A3. [Note the following properties: i)  $\psi_2(x)$  is even about x=0; ii)  $\psi_2(x) \to 0$  as  $x \to \pm \infty$ .]



Fig. A3: sketch of  $\psi_2(x)$ .

c)

i) Let  $a_0 = 0.775, a_1 = 0.5, a_2 = -0.387$ . Then:

$$\int_{-\infty}^{\infty} dx \psi^*(x) \psi(x) = \int_{-\infty}^{\infty} dx \left( a_0 \varphi_0 + a_1 \varphi_1 + a_2 \varphi_2 \right)^* \left( a_0 \varphi_0 + a_1 \varphi_1 + a_2 \varphi_2 \right)$$

$$= \int_{-\infty}^{\infty} dx \left( a_0 \varphi_0 + a_1 \varphi_1 + a_2 \varphi_2 \right) \left( a_0 \varphi_0 + a_1 \varphi_1 + a_2 \varphi_2 \right) , \quad [A1]$$

where the second line follows from the first because the coefficients  $a_j$  and the energy eigenfunctions  $\varphi_j(x)$  are real-valued. Note next that  $\int_{-\infty}^{\infty} dx \varphi_j(x) \varphi_k(x) = 0$  for  $j \neq k$ , because the energy eigenfunctions are orthogonal, and that  $\int_{-\infty}^{\infty} dx \varphi_k(x) \varphi_k(x) = 1$  for k = 0, 1, 2, since these eigenfunctions

are stated to be "normalized". Thus, all the integrals in Eq. (A1) can easily be performed, with the result that:

$$\int_{-\infty}^{\infty} dx \psi^*(x) \psi(x) = \sum_{j=0}^{2} a_j^2 = .775^2 + .5^2 + .387^2 = 1$$

QED.

ii) The probability  $P_n$  that a measurement of energy yields  $E_n$  is given by  $a_n^2$ . In particular,  $P_1 = 0.5^2 = 0.25$ .

iii) 
$$< E >= \sum_{n=0}^{2} a_n^2 E_n = 1.05 \hbar \omega.$$