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                                Chemistry 1410, Hour Exam 1, Solution Key

1) a) Appeal to the 1D Particle in the Box (PinB) model for the single electron energy levels of the pi 
electrons in hexatriene. Furthermore: respect the Pauli Exclusion Principle, putting no more than two 
(spin-paired) electrons in each single-electron spatial state.  This leads to the diagram shown in Fig. A1, 
and thus the conclusion that the highest energy pi electron goes into the PinB level n=3 when the system 
is in its electronic ground state configurations (electrons are packed into the lowest single-electron states 
possible without violating the Pauli Exclusion Principle). 

b) The lowest energy transition possible would be for an electron occupying n=3 to make a transition into 
the (previously unoccupied) level n=4.   Denoting  nE  as the PinB energy eigenvalue corresponding to 

level n, then 43 4 3E E E∆ = −  is the increase in electronic energy incurred when an electron makes the 

transition from 3 4n n= → = .  This energy has to supplied by the absorbed photon, i.e., 43phE E= ∆ .  

Recall that for an electron moving in a 1D PinB, 
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the effective box length.  Using the same arguments used for butadiene (cf. Fig. 1 on the exam) and 
octatetraene (see class notes), we arrive at the approximation for all-trans hexatriene (with 6 carbon 
atoms) that 6L R≅ , with R being the effective average C-C bond length: cf. Fig. A2.  Now we can 
calculate: 
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Thus: 7 / 36 0.194α = ≅ . 

c) Since 
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=1.6x105cm-1, then the absorbed photon energy is 
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36phE cm cm− −= ⋅ × = × .  This corresponds to a wavelength of  

4 1 5[3.1 10 ] 3.23 10 3,233cm cm− −× = × = Å.   
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Fig. A1. Ground electronic state configuration for all-trans hexatriene, 
assuming a 1D Particle in a Box model for the single electron states. 

Fig. A2. Mapping the all-trans hexatriene molecule to a 1D Particle in a Box: 
determining the box length L=5R + 2(R/2) = 6R. 
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3) a) For a generic 1D harmonic oscillator characterized by mass m and force constant k, the allowed 

energy eigenvalues are given by 
1

( )
2nE n ω= + � , n=0,1,2,..., with /k mω ≡ . The energy of the 2nd

excited state thus corresponds to n=2, or 2
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2
E ω= � . 

b) From the class notes (or Engel textbook), the energy eigenfunction corresponding to2E  is  
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with Hermite polynomial 2
2( ) 4 2H y y≡ − . 

A sketch is provided in Fig. A3. [Note the following properties: i) 2( )xψ  is even about x=0; ii) 

2( ) 0xψ →  as x → ±∞ .] 

Fig. A3: sketch of  2( )xψ . 

c)   

i) Let 0 1 20.775, 0.5, 0.387a a a= = = − .  Then: 

                  ( ) ( )0 0 1 1 2 2 0 0 1 1 2 2

*
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                                                  ( )( )0 0 1 1 2 2 0 0 1 1 2 2dx a a a a a aϕ ϕ ϕ ϕ ϕ ϕ
∞

−∞
= + + + +∫   ,    [A1] 

where the second line follows from the first because the coefficients ja  and the energy eigenfunctions 

( )j xϕ are real-valued.  Note next that ( ) ( ) 0j kdx x xϕ ϕ
∞

−∞
=∫  for j k≠ , because the energy 

eigenfunctions are orthogonal, and that ( ) ( ) 1k kdx x xϕ ϕ
∞

−∞
=∫  for 0,1,2k = , since these eigenfunctions 
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are stated to be “normalized”.  Thus, all the integrals in Eq. (A1) can easily be performed, with the result 
that: 
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QED. 

ii) The probability nP  that a measurement of energy yields nE  is given by 2
na  .  In particular, 

2
1 0.5 0.25P = = . 

iii) 
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