Chemistry 1410, Hour Exam 1, Solution Key

1) a) Appeal to the 1D Particle in the Box (PinBddel for the single electron energy levels of the p
electrons in hexatriene. Furthermore: respect #ali FExclusion Principle, putting no more than two
(spin-paired) electrons in each single-electrortigpatate. This leads to the diagram showikiign Al,
and thus the conclusion that the highest energyeuitron goes into the PinB leug3 when the system
is in its electronic ground state configurationle¢rons are packed into the lowest single-elecstates
possible without violating the Pauli Exclusion Ripie).

b) The lowest energy transition possible would dreah electron occupying n=3 to make a transitiga i
the (previously unoccupied) leve4. Denoting E, as the PinB energy eigenvalue corresponding to

level n, then AE,; = E, — E; is the increase in electronic energy incurred waerelectron makes the
transition fromn=3 — n=4. This energy has to supplied by the absorbedophate., E, = AE,;.

I . h? : .
Recall that for an electron moving in a 1D PinB, =8—L2, wherem, is the electron mass amdis
m,

the effective box length. Using the same argumestd for butadiene (cf. Fig. 1 on the exam) and
octatetraene (see class notes), we arrive at theoxdmation for all-trans hexatriene (with carbon
atoms) thatL [I6R, with R being the effective average C-C bond length: a. R2. Now we can
calculate:

7 K

h2
" 36anR’

E =AE, =—— [4*-3?
ph 43 8me(6R)2[ ]

Thus:a =7/360 0.194

2
C) Since h—2 =1.6x10cm*, then the absorbed photon energy is
8

m.R
7

E, =—0.6x10cm™ = 3.% 10cm™. This corresponds to a wavelength  of
36

[3.1x10' T'em = 3.23 10°cm= 3,23A.
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Fig. Al. Ground electronic state configuration &tirtrans hexatriene,
assuming a 1D Particle in a Box model for the sirejectron states.
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Fig. A2. Mapping the all-trans hexatriene moledol@ 1D Particle in a Box:
determining the box length L=5R + 2(R/2) = 6R.
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3) a) For a generic 1D harmonic oscillator chamdmtel by massn and force constark, the allowed

energy eigenvalues are given By, = (n+%)ha), n=0,12,..., with w=+/k/m. The energy of the"?

. 5
excited state thus corresponds to n=2Fgi= Eha).

b) From the class notes (or Engel textbook), thergneigenfunction correspondinglyg is

1 mw )" mw _Mw ,
W, (X —2—\/5(%) H{Ex}exp{ EX}

with Hermite polynomialH,(y) = 4y - 2.

A sketch is provided in Fig. A3. [Note the followinproperties: i){/,(X) is even abouk=0; ii)
Y,(X) - 0 asx - *o ]

Fig. A3: sketch of ¢, (X) .

c)
i) Let a, =0.775a, = 0.5a, =— 0.38. Then:

[" g (9ux =] ox(ad, +ag, +ap,) (ag,tap tap)

= [ dx(apo +ag,+ag,)(ag,tag rag) . (Al

where the second line follows from the first beeatise coefficientsa, and the energy eigenfunctions

¢, (x)are real-valued.  Note next thaj‘_oo dxg; ()¢, (x) =0 forj#k, because the energy

eigenfunctions are orthogonal, and tljgtdx¢k(x)¢k(x) =1 for k=0,1, 2, since these eigenfunctions



are stated to be “normalized”. Thus, all the inségyin Eq. (A1) can easily be performed, with thsult

that:

i) The probability P, that a measurement of energy yieldls is given byaﬁ . In patrticular,

QED.



