Nov. 12, 2007

Chemistry 1410, Hour Exam 2: Problem 2 (take home **).

Due: Nov. 14, 2007 ,in class.
** N.B.: You may use any written materials you wish, but you may not talk to anybody about this exam problem until after it has been handed in.
2) [35\%] The atoms of diatomic molecule, masses m_{1}, m_{2} [hence with reduced mass $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$], are bound by the central potential $v(r)=\frac{1}{2} k r^{2}$. Thus, if the molecule is in angular momentum state l (with possible values $l=0,1,2, \ldots$), the relative motion of the atoms in the molecule is determined by the effective radial potential:

$$
v^{e f f}(r)=\frac{1}{2} k r^{2}+\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}
$$

a) Show that the minimum value of $v^{\text {eff }}(r)$ occurs precisely at the radius $r_{m}=\left[\frac{\hbar^{2} l(l+1)}{\mu k}\right]^{1 / 4}$.
b) For nonzero values of l, compute $d^{2} v^{e f f}(r) / d r^{2}$ at the value $r=r_{m}$. [Hint: the answer turns out to be independent of the value of l.]
c) Using the quadratic approximation to $v^{e \text { eff }}(r)$ obtained by expanding it in a $2^{\text {nd }}$ order Taylor Series about $r=r_{m}$, calculate the difference between the lowest two quantum mechanical energy eigenvalues corresponding to a given non-zero value of l. [Hints: i) Think "harmonic oscillator": consult Fig. 1; ii) Again, the answer turns out to be independent of the value of l.

Fig. 1 Sketch of $v^{\text {eff }}(r)$ vs. $v q(r)=v^{\text {quad }}(r)=$ quadratic expansion of $v^{\text {eff }}(r)$ about the minimum of the latter. Also shown are the 3 lowest energy levels of (harmonic oscillator!) $v^{\text {quad }}(r)$.

