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                       Solution Key, Hour Exam 2, Chem. 1410,  11/07 
 
 
1) Note the general formula for hydrogenic atom energy levels: 2 2/n HE Z R n= − , where Z is the 

atomic number, 1,2,...n =  is the principal quantum number, and HR  is the Rydberg constant for the 

hydrogen atom: numerically, 13.6HR eV= . So … 

 
a) i)(8 points) Ignoring the “other electron”, the tagged electron feels the bare (unscreened) Z=+2 
helium nucleus.  Thus if it is in a 1s orbital (n=1), 1 4 54.4He

HE R eV= − = − . 

 
ii) (8 points) Assuming that the other (inner lying) electron effectively reduces the bare helium 
nucleus charge by one unit to Z=1 (effectively, an H-atom nucleus), then if the tagged electron is in 
a 1s orbital, 1 13.6H

HE R eV= − = − . 

 
b) (6 points) The true situation for a He atom lies somewhere between the extremes considered in i) 
and ii) above: the other electron partially (but not completely) shields the tagged electron from the 
nucleus, so the tagged electron experiences an effective nuclear charge that lies somewhere 
between Z=1 and Z=2, resulting in a binding energy bindE  in the range 13.6 54.4bindeV E eV< < .  

[Note: the experimentally measured first ionization potential for ground state He is ~25eV.] 
 

(c) (8 points)From PS7, we know that for a hydrogenic atom in an l=0 state,
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have the same meaning as above, and 0a  is the hydrogen atom Bohr radius; numerically, 0 0.53a = Å.  

Following the reasoning above, in the extreme case that the tagged electron does not feel the other electron’s 
presence at all (because the tagged electron lies inside the other electron at all times), then the effective 

value of Z is 2, and 0
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r< > = =  Å.  In the other extreme case that the tagged electron is always 

farther away from the nucleus than the other electron, then the tagged electron sees a Z=1 nucleus, and 
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r< > = = Å.  We expect that for an electron in the true ground electronic state of the helium 

atom, the average radial distance from the nucleus avr  will be bracketed by these extreme values, i.e.,  

0.4Å< avr  <0.8 Å. 

 
 

2) a) (12.5 points) Note:     
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The minimum of effv  occurs at mr  s.t. ( ) / 0eff
mdv r dr = .  Thus: 
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b) (12.5 points) Differentiating again: 
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Thus:   2 2( ) / 4eff

md v r dr k=  

c) (10 points) Expanding ( )effv r in a Taylor series about mr : 
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Note: the first order term in the expansion vanishes because ( ) / 0eff

mdv r dr = . 

 
Neglecting cubic and higher terms in the Taylor series expansion, then ( ) ( )eff quadv r v r≅ , with  
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( ) ( ) ( )

2
quad eff

m mv r v r k r r= + −� ,    4k k≡�   . 

 
As sketched in Fig. A1, quadv  is a parabolic (“harmonic oscillator”) potential.  Its quantum 
mechanical energy eigenvalues are characterized by a constant spacing between any adjacent pair 

of energy levels, namely, E ω∆ = �� , with / 2 /k kω µ µ= =�� .  Thus, the difference between the 

lowest two energy levels in this well is 1 0 2 /E E k µ− = � . 

 
 
 
 
 
 
 
 
 
3) a) (12 points) In region I, the Schrödinger Eq. reads: 
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Its solutions (modulo normalization) aresin ,coskx kx , with ( )k E stated in the problem.  Only the 
sin solution obeys the boundary condition that (0) 0ψ = ; thus,  the cos solution must be discarded. 
 
In region II, the Schrödinger Eq. reads:   
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For 0E V<  the solutions of this differential equation (modulo normalization) are 

exp( ),exp( )x xκ κ− , with ( )Eκ stated in the problem. The solution exp( )xκ blows up as x → ∞ , 
and thus must be discarded. 
 
Note: We can arbitrarily normalize the solution in region I (with the understanding that we will 
normalize the complete energy eigenfunction once it has been fully determined).  This then implies 
a scale constant A  in region II which is chosen as follows: 
 
b) (12 points) Match  ( ) ( )I IIL Lψ ψ= , i.e.,:                       sin LkL Ae κ−=                  [i] 

 
    Match  ( ) / ( ) /I IId L dx d L dxψ ψ= , i.e.:     cos Lk kL Ae κκ −= −            [ii] 

 
Dividing [ii]/[i], we obtain for the quantization condition: cot /kL kκ= − , or, equivalently: 
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c)  Using the equivalent form for the quantization condition stated in Eq. 2 of the Exam, and consulting 
Fig. 2 of the exam: 
 
i) (5 points) There are 4 intersections of the l.h.s. and the r.h.s. of Eq. 2 in the energy range 

00 E V< < .  Thus there are 4 bound states in this well. 

 
iii) (6 points) Counting the lowest energy bound state as “state 1”, then state 3 corresponds to the 
intersection at 7.5ε ≅ .  In the case of an infinitely deep box (0V = ∞ ), this intersection would move 

to the value ofε  at the 3rd vertical line from the left, namely, 9ε = .  (Note: this is the 3n =  
solution of the standard particle in a box of width a.) 
 
[Question: Can you provide a simple reason why the energy of this state goes down when 0V  is 

reduced from ∞ to a finite value?] 
 
 
 
 
 
 
 
 
 
 
 
 


