Chem. 1410: Solutions for Hand-In Problems.

1) (2 points) Consider $\hat{x} \hat{p} F(x)=x \frac{\hbar}{i} \frac{\partial F(x)}{\partial x}$

Now consider:

$$
\begin{equation*}
\hat{p} x F(x)=\frac{\hbar}{i} \frac{\partial[x F(x)]}{\partial x}=\frac{\hbar}{i}\left[x \frac{\partial F(x)}{\partial x}+F(x)\right] \tag{ii}
\end{equation*}
$$

Subtraction (i)-(ii), we obtain: $[\hat{x} \hat{p}-\hat{p} \hat{x}] F(x)=i \hbar F(x)$, QED.
2) a) (2 points) The Gaussian $f(x)$ is an even function (symmetric about $x=0$); $\sin (j x)$ is an odd function (antisymmetric about $x=0$). The product of an even and an odd function is an odd function. That is, $f(x)$ sin (jx) is an odd function. [Plot it if you have doubts!] The integral of an odd function over any interval positioned symmetrically about $x=0$ is 0 . That is the case with the integral which defines b_{j}. Hence $b_{j}=0$.
b) (2 points) If $\sigma \ll \pi$, then the Gaussian function $f(x)$ has decayed for all practical purposes to 0 by the time $x= \pm \pi$. Thus, the integrand $f(x)$
is identically 0 from $[\pi, \infty]$ and from $[-\infty,-\pi]$, and hence extending $\int_{-\pi}^{\pi}$ to $\int_{-\infty}^{\infty}$ does not change the result. [Note: these arguments are also valid when $f(x)$ is replaced with $f(x) \cos (j x)$, since $|\cos (j x)| \leq 1$.
c) (2 points) i) Using the integral identity with parameter $\gamma=0$, we see that
$\int_{-\infty}^{\infty} d x f(x)=1$, and hence $a_{0}=\frac{1}{2 \pi}$.
ii) Using the integral identity with parameter $\gamma=j$, we see that
$\int_{-\infty}^{\infty} d x f(x) \cos (j x)=\exp \left(-j^{2} \sigma^{2} / 2\right)$, and hence $c_{j}=\frac{1}{\pi} \exp \left(-j^{2} \sigma^{2} / 2\right)$.
d) (2 points) Results for $f_{2}(x), f_{6}(x)$ (showing the periodicity of the Fourier expansion on an interval of 2π) are compared to $f(x)$ (on the interval $[-\pi, \pi])$ in Fig. A1 for the case that $\sigma=0.5$. Note that $f_{2}(x)$ (i.e., $N=2$ in the Fourier expansion) is not fully converged w.r.t. $f(x)$, but $f_{6}(x)$ is. (Plots of $f_{N}(x), \mathrm{N}>6$ [not shown] are indistinguishable from the $\mathrm{N}=6$ case.)
e) (2 points) Results for $f_{2}(x), f_{6}(x)$ (showing the periodicity of the Fourier expansion on an interval of 2π) are compared to $f(x)$ (on the interval $[-\pi, \pi])$ for the case that $\sigma=0.25$ Note that neither $f_{2}(x)$ nor $f_{6}(x)$ is fully converged, but by $N=10-15$ the Fourier series does converge (cf. Fig. A3). This behavior is expected: as the Gaussian $f(x)$ becomes more narrowly localized in space, it takes a wider range of wavevectors in the sine/cosine expansion to build up the Gaussian near $x=0$, and to sum to zero (by destructive interference) for $|x| \gg \sigma$.
[Note: This is an allegory for the Heisenberg Uncertainty Principle, since the eigenfunction of the momentum operator \hat{p} corresponding to momentum value p is the plane wave $\exp (i p x / \hbar)$, i.e., a cos/sin wave corresponding to wavevector p / \hbar.

Fig. A3. Plots of $f_{13}(x), f(x)$ for $\sigma=0.25$.
2.5) 国5) Show that $\frac{a+i b}{c+i d}=\frac{a c+b d+i(b c-a d)}{c^{2}+d^{2}}$
$\frac{a+i b}{c+i d}=\left(\frac{a+i b}{c+i d}\right)\left(\frac{c-i d}{c-i d}\right)=\frac{a c+b d+i b c-i a d}{c^{2}+d^{2}}=\frac{a c+b d+i(b c-a d)}{c^{2}+d^{2}}$

(2.10)

 eigenfunction of the operator in the second column. If so, what is the eigenvalue?a) $\sin \theta \cos \phi$
$\frac{\partial}{\partial \phi}$
b) $e^{-x^{2} / 2} \quad \frac{1}{x} \frac{d}{d x}$
c) $\sin \theta$

$$
\frac{\sin \theta}{\cos \theta} \frac{d}{d \theta}
$$

a) $\sin \theta \cos \phi \quad \frac{\partial}{\partial \phi}$ $\frac{\partial}{\partial \phi} \sin \theta \cos \phi=-\sin \theta \sin \phi . \quad$ Not an eigenfunction
b) $e^{-1 / 2^{x^{2}}}$
$\frac{1}{x} \frac{d}{d x}$
$\begin{array}{ll}\frac{1}{x} \frac{d}{d x} e^{-1 / 2^{x^{2}}}=-e^{-1 / 2^{x^{2}}} & \text { Eigenfunction with eigenvalue }-1 \\ \text { c) } \sin \theta & \frac{\sin \theta}{\cos \theta} \frac{d}{d \theta}\end{array}$
$\frac{\sin \theta}{\cos \theta} \frac{d}{d \theta} \sin \theta=\sin \theta \quad$ Eigenfunction with eigenvalue +1
2.15 Which of the following wave functions are eigenfunctions of the operator $d^{2} / d x^{2}$? If they are eigenfunctions, what is the eigenvalue?
a) $a e^{-3 x}+b e^{-3 i x}$
b) $\sin ^{2} x$
c) $e^{-i x}$
d) $\cos a x$
e) $e^{-i x^{2}}$
a) $\frac{d^{2}\left(a e^{-3 x}+b e^{-3 x}\right)}{d x^{2}}=9 a e^{-3 x}-9 b e^{-3 x x} \quad$ Not an eigenfunction
b) $\frac{d^{2} \sin ^{2} x}{d x^{2}}=-2 \sin ^{2} x+2 \cos ^{2} x \quad$ Not an eigenfunction
c) $\frac{d^{2} e^{-i x}}{d x^{2}}=-e^{-t x} \quad \quad \quad$ Eigenfunction with eigenvalue -1
d) $\frac{d^{2} \cos a x}{d x^{2}}=-a^{2} \cos a x \quad$ Eigenfunction with eigenvalue $-a^{2}$
e) $\frac{d^{2} e^{-i x^{2}}}{d x^{2}}=-2 i e^{-i x^{2}}-4 x^{2} e^{-i x^{2}} \quad$ Not an eigenfunction

P2.18)

(0) Find the result of operating with $\frac{d^{2}}{d x^{2}}-4 x^{2}$ on the function $e^{-a x^{2}}$. What must the value of a be to make this function an eigenfunction of the operator?

$$
\frac{d^{2} e^{-a t^{2}}}{d x^{2}}-4 x^{2} e^{-a x^{2}}=-2 a e^{-a x^{2}}-4 x^{2} e^{-a x^{2}}+4 a^{2} x^{2} e^{-a a^{2}}=-2 a e^{-a x^{2}}+4\left(a^{2}-1\right) x^{2} e^{-a x^{2}}
$$

For the function to be an eigenfunction of the operator, the terms containing $x^{2} e^{-\alpha r^{2}}$ must vanish. This is the case if $a= \pm 1$.

P2.23)

Normalize the set of functions $\phi_{n}(\theta)=e^{i n \theta}, 0 \leq \theta \leq 2 \pi$. To do so, you need to multiply the functions by a so-called normalization constant N so that the integral $N N \cdot \int_{0}^{2 \pi} \phi_{m}(\theta) \phi_{n}(\theta) d \theta=1$ for $m=n$
$N N^{\cdot} \int_{0}^{2 \pi} e^{-i n \theta} e^{i \pi \theta} d \theta=N N^{\cdot} \int_{0}^{2 \pi} d \theta=2 \pi N N^{*}=1$ This is satisfied for $N=\frac{1}{\sqrt{2 \pi}}$ and the normalized functions are $\phi_{n}(\theta)=\frac{1}{\sqrt{2 \pi}} e^{i n \theta}, \quad 0 \leq \theta \leq 2 \pi$.

P2.30)

P2.30) Let $\binom{1}{0}$ and $\binom{0}{1}$ represent the unit vectors along the x and y directions,
respectively. The operator $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ effects a rotation in the $x-y$ plane. Show that the length of an arbitrary vector $\binom{a}{b}=a\binom{1}{0}+b\binom{0}{1}$, which is defined as $\sqrt{a^{2}+b^{2}}$, is unchanged by this rotation. See the Math Supplement for a discussion of matrices.

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{a}{b}=\binom{a \cos \theta-b \sin \theta}{a \sin \theta+b \cos \theta}
$$

The length of the vector is given by

$$
\begin{aligned}
\sqrt{(a \cos \theta-b \sin \theta)^{2}+(a \sin \theta+b \cos \theta)^{2}} & =\left(a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta-2 a b \sin \theta \cos \theta\right. \\
& \left.+a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta+2 a b \sin \theta \cos \theta\right)^{1 / 2}
\end{aligned}
$$

$$
=\sqrt{a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+b^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\sqrt{a^{2}+b^{2}}
$$

This result shows that the length of the vector is not changed.

