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Chem. 1410: Solutions for Hand-In Problems. 
 
 

 
a) The normalization constraint is: 
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The integral identity given in part a)-ii) confirms that ( )xψ in Eq. [1] is properly normalized. 
 
b) [Again …] When a quantum mechanical system is prepared in a state described by wavefunction 

( )xψ , then the expectation (average) value of an observable A is given formally by: 
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where Â  is the quantum mechanical operator corresponding to A. Thus, 
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< >= ∫ .  Using the specific form of ( )xψ in Eq. [1]: 
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because the overall integrand is odd [why?]. 
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.   Using the specific form of ( )xψ in Eq. [1], then 

2 2( ) / exp( / 4 )x x x xψ σ∂ ∂ ∝ −  [to within a constant factor]. Hence 0p< >= , since the overall 
integrand  is odd [why?]. 
 

c)  2 2* ( ) ( )x dx x x xψ ψ
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< >= ∫ .  Using the specific form of ( )xψ in Eq. [1], then 
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where the explicit evaluation of the integral is given in the statement of the problem. 
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d)  For this ( )xψ : 
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Note: 
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Thus: 
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Hence, 1/ 4α = . 
 
Note: the final equality on the r.h.s.of Eq. (A1) is achieved by appealing to the generic integrals 
provided in parts a) and c) above. 
 

e) Since 0x< >= , then 2x xδ = < > , and analogously for pδ .  Using the results from parts c) 
and d), we thus obtain: 
 

                                       / 2x pδ δ α= =� �  
 
f) The result obtained in e) is consistent with the general constraints of the Heisenberg Uncertainty 
Principle.  In particular, any Gaussian wavefunction of the type given in Eq. [1] represents a 
“minimum uncertainty state”, in the sense that it is impossible to device a physically acceptable 
wavefunction which has a position-momentum uncertainty product less than / 2� . 
 
 
2) Given that a particle is prepared in energy eigenstate n of a 1D box spanning the interval [0,L]. 
First, calculate the probability ( )nP l  to find the particle in the interval [0, ]l , with 0<l<L: 
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[ The integral above may be reduced to elementary forms using the trigonometric identity 
2sin ( ) [1 cos(2 )] / 2z z= − .] 

 
Since the probability density for a particle prepared in any energy eigenstate n of a 1D infinite-
walled box is symmetric about the midpoint of the box (why?),  then: 
 

MT
nP = Probability to find the particle in the interval [L/3,2L/3] (the middle third of the box) = 
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for a particle prepared in energy eigenstate n.  
 

Specifically, 1 0.61MTP = , 3
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MTP∞ = , as expected [why?]. 

 
 
 
 
 
 
 
 
 
 

 
 



   P4.5)





(3) Engel, P4.25)


