Chem 1410: Solutions for Hand-1n Probl ens.

a) The normalization constraint is:
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The integral identity given in part a)-ii) confirrtisat/(x) in Eq. [1] is properly normalized.

b) [Again ...] When a quantum mechanical system épared in a state described by wavefunction
Y(X), then the expectation (average) value of an obabé\A is given formally by:

<A>= [T da () AR,

where A is the guantum mechanical operator corresponaig Thus,
< X>= J'_w dxy * (X)) xep(X) . Using the specific form af/(x) in Eq. [1]:
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because the overall integrand is odd [why?].

x=0,

Next, < p >= jm dxy * (%) Fai},[/(x) . Using the specific form af/(x) in Eg. [1], then

- I OX
yw(X)/ox O xexp(x* /4% ) [to within a constant factor]. Heneep >= 0, since the overall
integrand is odd [why?].

C) <Xx*>= I_o; dxp * (X x2@(X) . Using the specific form af/(x) in Eq. [1], then
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where the explicit evaluation of the integral igegi in the statement of the problem.



d) For thig/(x):
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Hence,a =1/4.

Note: the final equality on the r.h.s.of Eq. (A& )aichieved by appealing to the generic integrals
provided in parts a) and c) above.

e) Since< x>=0, thendx =+/< x* >, and analogously fodp. Using the results from parts c)
and d), we thus obtain:

oxop=~Jah=nl2
f) The result obtained in e) is consistent with gle@eral constraints of the Heisenberg Uncertainty
Principle. In particular, any Gaussian wavefunciod the type given in Eq. [1] represents a

“minimum uncertainty state”, in the sense thas iinnpossible to device a physically acceptable
wavefunction which has a position-momentum uncetygproduct less thah/2.

2) Given that a particle is prepared in energyrestggen of a 1D box spanning the interj@l.L].
First, calculate the probabilit®,(I) to find the particle in the intervgD,l], with O<I<L:

P(I)——J. sin (nnx/L)dx_'I——su H)



[ The integral above may be reduced to elementams using the trigonometric identity
sin®(z) = [1- cos(Z )]/ 2]

Since the probability density for a particle pregghin any energy eigenstat®f a 1D infinite-
walled box is symmetric about the midpoint of thex ifwhy?), then:

PM" = Probability to find the particle in the interjal/3,2L/3] (the middle third of the box) =

1-2P (L/3)= 1- z{i—i sin(277 /3}=—1+—1 sin@r /7
3 2nm 3 nr

for a particle prepared in energy eigenstate

Specifically, B"" =0.61, B =% [why?], andPM" =?1)’, as expected [why?].



P4.5) Explain why each of the following

unnormalized functions is or is not an acceptable wave function based on criteria such as being
consistent with the boundary conditions, and with the association of w' (x)w(x)dx with

probability.
nix 2 3 D .
a) Acos b) B(x+x ) ¢) Cx*(x—a) d) ——
sin——
a
TX. : , ;
a) Acos i is not an acceptable wave function because 1t does not satisfy the boundary

a

condition that y(0)=0.

b) B (.r + :-:2) is not an acceptable wave function because it does not satisfy the boundary

condition that y(a) ="0.

¢) Cx* (x—a) is an acceptable wave function. It satisfies both boundary conditions and can

be normalized.

D . ; . .
d) e 18 notan acceptable wave function. It goes to infinity atx = 0 and cannot be
i X
sin '
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normalized in the desired interval.
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' m Are the eigenfunctions of H for the particle in the one-dimensional box also
eigenfunctions of the momentum operator p.? Calculate the average value of p, for the case
n = 3. Repeat your calculation for n =5 and, from these two results, suggest an expression
valid for all values of n. How does your result compare with the prediction based on classical
physics?

Forn=3,

(p);Ivf’ (x)(—fhd—d;]w(x)dxsz%}m[”x}cos(hx]dx
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Using the standard integral _[sm (bx)cos(bx)d x= S
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Using the standard integral _[sm (bx)cos(bx)dx= 5y
)= ~2ih 57 cos’ (57) cos’(0) | —2in S?z'[ 1 1]
2 a| 26 26 | a al20 2b)

This is the same result that would be obtained using classical physics. The classical particle is
equally likely to be moving in the positive and negative x directions. Therefore the average of

a large number of measurements of the momentum is zero for the classical particle moving in a
constant potential.
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JB88) (Vhat is the solution of the time-dependent Schrodinger equation ¥ (x,¢) for the total
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explicitly in terms of the parameters of the problem.
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Mrﬁnalizc the total en‘ergy eigenfunction for the rectangular two-dimensional box,
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%}%géal[y, the quantization of translational motion is not significant for atoms
because of their mass. However, this conclusion depends on the dimensions of the space to
which they are confined. Zeolites are structures iwith small pores that we describe by a cube
with edge length 1 nm. Calculate the energy of a H, molecule with n, = n,=n,=10. Compare

this energy to kT'at 7= 300 K. Is a classical or a quantum description appropriate?
]

h
B . 1(nf+ni+nf)
"t 8ma :

(6.626x1077 5} (102 +10* +10?)
8x2.016 amux1.661x10"kg(amu)™ x (10 m)’

=4.92x1072'J

Using the results of P15.22, the ratio of the energy spacing between levels and kT determines if
a classical or quantum description is appropriate.
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By =B, _ 3.023<10_1J r—
KT 1361x10PJ K™'%x298 K

Because this ratio is not much smaller than one, a quantum description i$ appropriate.

(3) Engel, P4.25)

Suppose that the wave function for a system can be written as
! 1 342
W(‘t)zij‘?)t(‘t)+z¢z(x)+ 4

eigenfunctions of the operator E

¢,(x) and that ¢,(x),#,(x) and ¢;(x) are normalized

with eigenvalues Ey, 3E), and 7E}, respectively.

kineric

a) Verify that y(x) is normalized.

b) What are the possible values that you could obtain in measuring the kinetic energy on
identically prepared systems?

¢) What is the probability of measuring each of these eigenvalues?

d) What is the average value of Eiieic that you would obtain from a large number of
measurements?

a) We first determine if the wave function is normalized.
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All but the first three integrals are zero because the functions ¢, (x),¢, (x), and ¢, (x) are

orthogonal. The first three integrals have the value one, because the functions are normalized.
Therefore,

¥ (2w l+_+[3 ﬁ!}£3+ﬁfJ=L+L’_£ 1
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b) The only possible values of the observable kinetic energy that you will measure are those
corresponding to the finite number of terms in the superposition wave function. In this case,
the only values that you will measure are £, 3£, and 7E).

¢) For a normalized superposition wave function, the probability of observing a particular
eigenvalue is equal to the square of the magnitude of the coefficient of that kinetic energy
eeigenfunction in the superposition wave function. These coefficients have been calculated
above.-The probabilities of observing £}, 3E), and 7E) are Y%, 1/16, and 11/16, respectively.

d) The average value ofthe kinetic energy is given by

; 1 11
-Er = BPE. =— =
(E)= Y BE e 631: ¥ 1B, = 525E;




