(1) (4 points) Note: since $v=c / \lambda$, then, given a small change in wavelength of $\delta \lambda$ about a central value of λ, the corresponding frequency change is $\delta v=(d v / d \lambda) \delta \lambda=-\left(\mathrm{c} / \lambda^{2}\right) \delta \lambda$. [If frequency increases, wavelength decreases: hence the - sign.] Thus, appealing to the equation in point (ii), i.e., $D_{\lambda}(\lambda) \Delta \lambda=D_{v}(v) \Delta \nu$, we can write

$$
\begin{equation*}
\frac{8 \pi}{\lambda^{4}} \cdot \frac{\lambda^{2}}{c} \Delta v=D_{v}(v) \Delta v \tag{1}
\end{equation*}
$$

Note, either side of this equation gives the number of modes in the selected interval, and thus Δv and $\Delta \lambda$ are the magnitudes of the (small) frequency and wavelength intervals, respectively. Finally, Eq. 1 above implies:

$$
D_{v}(v)=\frac{8 \pi}{\lambda^{2} c}=\frac{8 \pi v^{2}}{c^{3}} \quad, \mathrm{QED}
$$

(2) (a) (2 points) In general, the average of a property A over a discrete probability distribution is given by $\langle A\rangle=\sum_{j} p_{j} A_{j}$, where p_{j} is the normalized probability to be in state j, and A_{j} is the value of the property A in associated with state j. In the case of interest here the states are labeled by $j=0,1,2, \ldots \infty$ and the normalized probability to be in state j is the Boltzmann factor $p_{j}=e^{-j h \nu / k_{B} T} / \sum_{j=0}^{\infty} e^{-j h \nu / k_{B} T}$. Furthermore, the energy of state j (corresponding to j photons in an electromagnetic mode of frequency v) is $E_{j}=j h v$. Thus:

$$
<E(v)>=h \nu \sum_{j=0}^{\infty} j e^{-j h \nu / k_{B} T} / \sum_{j=0}^{\infty} e^{-j h \nu / k_{B} T} .
$$

(b) (i) (1 point) The infinite geometric series $1+x+x^{2}+\ldots=\frac{1}{1-x}$ for $|x|<1$ (otherwise the series diverges). In the case of our series expression for $D(v)$, we identify $x=\exp \left(-h v / k_{B} T\right)<1$, and thus:

$$
D(v)=\left[1-e^{-h \nu / k_{B} T}\right]^{-1} \quad, \text { QED }
$$

(ii) (2 points) Differentiating the series for $D(v)$ term by term w.r.t. v :

$$
\partial D / \partial v=\sum_{j=0}^{\infty} \frac{-j h}{k_{B} T} e^{-j h \nu / k_{B} T}
$$

and thus: $\quad N(v)=\frac{-k_{B} T}{h} \partial D(v) / \partial v, \quad$ QED.
iii)(1 point) Given the expression in (ii) and the explicit form for $D(v)$ in (i), we can evaluate:

$$
N(v)=\frac{e^{-h v / k_{B} T}}{\left(1-e^{-h v / k_{B} T}\right)^{2}}
$$

and hence:

$$
<E(v)>=h v N(v) / D(v)=\frac{h v}{\left[e^{h v / k_{B} T}-1\right]}, \text { QED. }
$$

P1.2) root mean square speed, $\mathrm{v}_{m m s}=\left\langle\mathrm{v}^{2}\right\rangle^{1 / 2}=\sqrt{\frac{3 k T}{m}}$, in which m is the molecular mass and k is the Boltzmann constant. Using this formula, calculate the de Broglie wavelength for He and Ar atoms at 100 and at 500 K .

$$
\lambda=\frac{h}{m \mathrm{v}_{\mathrm{rms}}}=\frac{h}{\sqrt{3 \mathrm{kTm}}}=\frac{6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}}{\sqrt{3 \times 1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \times 100 \mathrm{~K} \times 4.003 \mathrm{amu} \times 1.661 \times 10^{-27} \mathrm{~kg} \mathrm{amu}^{-1}}}
$$

$$
=1.26 \times 10^{-10} \mathrm{~m}
$$

for He at $100 \mathrm{~K} . \lambda=5.65 \times 10^{-11} \mathrm{~m}$ for He at 500 K . For $\mathrm{Ar}, \lambda=4.00 \times 10^{-11} \mathrm{~m}$ and $1,79 \times 10^{-14} \mathrm{~m}$ at 100 K and 500 K , respectively.

P1.7) Assume that water absorbs light of wavelength $3.00 \times 10^{-6} \mathrm{~m}$ with 100% efficiency. How many photons are required to heat 1.00 g of water by 1.00 K ? The heat capacity of water is $75.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.

$$
\begin{aligned}
& E=N h \nu=N \frac{h c}{\lambda}=n C_{p, m} \Delta T \\
& N=\frac{m}{M} \frac{C_{p, m} \Delta T \lambda}{h c}=\frac{1.00 \mathrm{~g}}{18.02 \mathrm{~g} \mathrm{~mol}^{-1}} \frac{75.3 \mathrm{~J} \mathrm{~K}}{}{ }^{-1} \mathrm{~mol}^{-1} \times 1.00 \mathrm{~K} \times 3.00 \times 10^{-6} \mathrm{~m} \\
& 6.626 \times 10^{-34} \mathrm{Js} \times 2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}=6.31 \times 10^{19}
$$

P1 ..12) Show that the energy density radiated by a blackbody
$\frac{E_{\text {total }}(T)}{V}=\int_{0}^{\infty} \rho(v, T) d v=\int_{0}^{-} \frac{8 \pi h v^{3}}{c^{3}} \frac{1}{e^{h \nu / k T}-1} d v$ depends on the temperature as T^{4}.
-. (Hint: Make the substitution of variables $x=h \nu / k T$.) The definite integral
$\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x=\frac{\pi^{4}}{15}$. Using your result, calculate the energy density radiated by a blackbody at 800 and 4000 K .

$$
\begin{aligned}
& \frac{E_{\text {tovel }}}{V}=\int_{0}^{\infty} \frac{8 \pi h v^{3}}{c^{3}} \frac{1}{e^{h / / h T}-1} d v . \text { Let } x=h v / k T ; d x=\frac{h}{k T} d v \\
& \int_{0}^{8 \pi h v^{3}} \frac{1}{c^{3}} \frac{1}{e^{h \nu / h T}-1} d v=\frac{8 \pi k^{4} T^{4}}{h^{3} c^{3}} \int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} d x=\frac{8 \pi^{5} k^{4} T^{4}}{15 h^{3} c^{3}} \\
& \text { At } 800 \mathrm{~K}, \frac{E_{\text {Iotal }}}{V}=\frac{8 \pi^{5} k^{4} T^{4}}{15 h^{3} c^{3}}=\frac{8 \pi^{5}\left(1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)^{4} \times(800 \mathrm{~K})^{4}}{15 \times\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{3}\left(2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{3}}=3.10 \times 10^{-4} \mathrm{~J} \mathrm{~m}^{-3} \\
& \text { At } 4000, \frac{E_{\text {totat }}}{V}=\frac{\left.8 \pi^{5} \times\left(1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}\right)^{-1}\right)^{4} \times(4000 \mathrm{~K})^{4}}{15 \times\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{3} \times\left(2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{3}}=0.194 \mathrm{~J} \mathrm{~m}^{-3}
\end{aligned}
$$

P1.17) The observed lines in the emission spectrum of atomic hydrogen are given by $\widetilde{\nu}\left(\mathrm{cm}^{-1}\right)=R_{H}\left(\mathrm{~cm}^{-1}\right)\left(\frac{1}{n_{1}^{2}}-\frac{1}{n^{2}}\right) \mathrm{cm}^{-1}, n>n_{1}$. In the notation favored by spectroscopists, $\tilde{v}=\frac{1}{\lambda}=\frac{E}{h c}$ and $R_{H}=109,677 \mathrm{~cm}^{-1}$. The Lyman, Balmer, and Paschen series refers to $n_{1}=$ 1,2 , and 3 , respectively, for emission from atomic hydrogen. What is the highest value of \tilde{v} and E in each of these series?

The highest value for \tilde{v} corresponds to $\frac{1}{n} \rightarrow 0$. Therefore,
$\tilde{v}=R_{H}\left(\frac{1}{1^{2}}\right) \mathrm{cm}^{-1}=109,667 \mathrm{~cm}^{-1}$ or $E_{\max }=2.18 \times 10^{-18} \mathrm{~J}$ for the Lyman series.
$\tilde{v}=R_{H}\left(\frac{1}{2^{2}}\right) \mathrm{cm}^{-1}=27419 \mathrm{~cm}^{-1}$ or $E_{\max }=5.45 \times 10^{-19} \mathrm{~J}$ for the Balmer series, and
$\tilde{v}=R_{H}\left(\frac{1}{3^{2}}\right) \mathrm{cm}^{-1}=12186 \mathrm{~cm}^{-1}$ or $E_{\max }=2.42 \times 10^{-19} \mathrm{~J}$ for the Paschen series.
P1.19) If an electron passes through an electrical potential difference of 1 V , it has an energy of 1 electron-volt. What potential difference must it pass through in order to have a wavelength of 0.100 nm ?

$$
\begin{aligned}
& E=\frac{1}{2} m_{e} \mathrm{v}^{2}=\frac{1}{2} m_{e} \times\left(\frac{h}{m_{e} \lambda}\right)^{2}=\frac{h^{2}}{2 m_{e} \lambda^{2}} \\
& =\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)^{2}}{2 \times 9.109 \times 10^{-31} \mathrm{~kg} \times\left(10^{-10} \mathrm{~m}\right)^{2}}=2.41 \times 10^{-17} \mathrm{~J} \times \frac{1 \mathrm{eV}}{1.602 \times 10^{-19} \mathrm{~J}}=150.4 \mathrm{eV}
\end{aligned}
$$

The electron must pass through an electrical potential of 150.4 V .

