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Particle in a finite-depth 1D Box (see Engel, problem P5.1) 
 
Consider the potential energy function depicted in Fig. 1, namely a box of width a  
with a finite depth 0V .  
 
This potential is piece-wise constant (has a constant value in each region I, II and 
III). 
 
 
 

Fig. 1: Finite-depth 1D box.  Ground state energy eigenfunction and 
energy level are sketched schematically. 
 
 
 
Thus, we can solve the Schrödinger Equation in regions I, II, III independently, and 
then piece them together … see below. 
 
Exploit the symmetry of the potential to seek solutions of even and odd parity 
separately. 
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Focus here on the even-parity solutions.  An even-parity eigenfunction corresponding 
to energy eigenvalue E must take the form  
 
                           ( ) x

I x Aeκψ =  
 
                           ( ) cos( )II x kxψ =  
 
                           ( ) x

III x Ae κψ −=  
 
with ( ) 2 /k E mE≡  and 0( ) 2 ( ) /E m V Eκ ≡ − . 
 
The allowed values of E (and the corresponding values of A) are determined by 
matching ( )xψ  and ( ) /d x dxψ  at / 2x a= ± .   
 
This leads to the following transcendental equation, which is effectively the 
quantization condition for the energy E: 
 
                            ( ) tan( ( ) / 2) ( )k E k E a Eκ=  
 
Or, equivalently: 
 

                            02tan( )
2

V EmEa
E
−

=                               [1] 

 
To analyze this equation further, introduce dimensionless versions of the system 
energy and the barrier height.  In particular, recall the ground state energy eigenvalue 

of a particle in an particle in an infinitely deep box of width a, namely 
2 2

22gsE
ma
π∞ = .   

Then, let / gsE Eε ∞≡  and 0 0 / gsv V E∞= .  
 
Substituting into Eq. [1] gives the equivalent equation: 
 
 

                                         0tan( )
2

v επ ε
ε
−

=                     [2] 
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Eq. 2 can be solved “graphically”, as shown in Fig. 2. 
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Fig. 2: For 0 30v = , solid red line shows l.h.s. of Eq. 2; dotted 
blue line shows r.h.s. of Eq. 2.  Dashed (vertical) green line 
shows locations of infinities of the l.h.s. of  Eq. 2, 
corresponding to eps=ε =1,9,25,… 
 
 
Precise determination of the intersection of the left and right hand sides of Eq. 2 (and 
hence the allowed values of 1 1 / gsE Eε ∞= , etc.) requires [elementary] numerical 
analysis.   
 
However, several qualitative features can be ascertained from the graphs in Fig. 2, 
including: 
 
i) As 0v →∞ , the intersections come at 1,9,25ε = .  These are precisely the even-parity 
energy levels (in units of gsE∞ ) of the infinite depth 1D Particle in a Box. 
 
ii)  There are only a finite number of solutions (crossings), i.e., a finite number of 
even-parity bound states in the box.  [Of course, the odd-parity states need to be 
analyzed, too, but the same conclusion holds for these.] 
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iii) Each finite-depth PinB energy level is lower than the corresponding infinite-
depth PinB level. 
 
 
 
Plugging in numbers:  If the particle is an electron ( 289.1 10em gm−= × ) confined to a 
box of width 10a = Å, then 0.38gsE∞ ≅ eV.   
 
So, 0 30v =  corresponds to a barrier height of  11.4 eV.   
 
Furthermore, one finds numerically: 
 
 1 0.80ε = , or 1 0.31E = eV 
 
 2 7.2ε = , or 2 2.7E =  eV               
 
 ,etc.  



V_0 = 1.6 x 10-19 J.
a= 9 x 10-10 m

For a wide barrier ,   1aκ

Transmission Probability = 

2 2 2

2 2 2

16
( )

ak e
k

κκ
κ

−

+

2 /k mE= 02 ( ) /m V Eκ = −with:

Tunneling of a particle through a Barrier in 1D (see Engel Problem P5.6):



Underlying Principle of Scanning 
Tunneling Microscopy (STM):

Electrons tunnel between STM tip
and atoms on a solid (metal) surface.



Some details of a Scanning Tunneling Microscope:



Some STM images of the surface of Si:
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