Chemistry 1480, Hour Exam 1, Feb. 7, 2007.

This exam consists of four (4) problems. Please work them all, and provide brief descriptions of your reasoning as appropriate. GOOD LUCK! [Note the designation $\beta \equiv (k_B T)^{-1}$, where k_B is Boltzmann's constant and T is the absolute temperature in degrees K.]

1) [25 %] A spin-1 particle interacting with a constant magnetic field *B* can be described as a <u>three</u> state system with energy levels $E = -\mu B, 0, \mu B$ (the constant μ is essentially the permanent magnetic moment of the particle). If the system is placed in thermal contact with a heat bath at temperature *T*,

a) Show that the partition function for the system is:

$$q = 1 + 2\cosh(\beta\mu B)$$

b) Obtain an expression for the average energy \overline{E} of the system. What is the value of \overline{E} when $T = \infty$?

c) Figure 1 shows three possibilities (A,B,C) for the graph of the system's constant volume heat capacity C_V vs. absolute temperature T. Which curve is qualitatively correct? What is the "fatal flaw" in each of the other two curves?

2) [25 %] Consider a monatomic ideal gas, whose entropy is described by the Sackur-Tetrode Equation.

a) Show that at a given pressure and temperature, the difference in molar entropies between a gas of atoms of type A and a gas of atoms of type B has the form:

$$S_m^{(B)} - S_m^{(A)} = \kappa R \ln(m_B / m_A)$$

where $S_m^{(A)}$ is the molar entropy of species A, and analogously for species B; furthermore, *R* is the ideal gas constant, and κ is a dimensionless numerical coefficient which <u>you are to compute</u>. [Note: Assume here that the ground electronic states of atoms A and B are nondegenerate.]

b) Given that the standard (i.e., p = 1 atm) molar entropy of gaseous argon [atomic mass = 40 amu] at 100° C is 19.4 *R*, use the result of part a) to deduce the standard entropy of gaseous xenon [atomic mass = 131 amu] at the same temperature. Please state your answer in units of *R*.

3) [25 %] Consider a particle characterized by an infinite number of nondegenerate states corresponding to energy levels $E_n = n\varepsilon$, n = 0, 1, 2, ..., with $\varepsilon > 0$ being an energy parameter (i.e., the "quantum of energy"). If this particle is placed in contact with a heat bath at absolute temperature *T*:

a) Show that the partition function for this system is:

$$q = [1 - e^{-\beta\varepsilon}]^{-1}$$

[Hint: $1 + x + x^2 + ... = (1 - x)^{-1}$ for |x| < 1.]

b) Show that the average energy of the system is:

$$\overline{E} = \varepsilon / (e^{\beta \varepsilon} - 1)$$

In particular, determine \overline{E} at T = 0, and briefly explain your result.

c) Give a general formula for the entropy S of this particle at temperature T. [Hint: simply combine the results of parts a) and b) in an appropriate fashion.]

In particular, show that as $T \to \infty$, $S \to k_B \ln(k_B T / \varepsilon)$.

4) [25%] In class we noted an "improved" version of Stirling's Approximation, namely:

$$\ln N! \cong N \ln N - N + \frac{1}{2} \ln(2\pi N) \tag{1}$$

a) Consider the binomial coefficient $c(n) \equiv N!/n!(N-n)!$ for a fixed value of N. Use the improved Stirling's approximation above to show that:

$$c(N/2) = \frac{N!}{[(\frac{N}{2})!]^2} \cong 2^N \sqrt{\frac{2}{\pi N}}$$
[2]

b) In class, we used the simple Stirling's approximation (the right hand side of Eq. [1] without the last term) to show that for large N, $c(n)/c(N/2) \cong \exp[-\frac{2}{N}(n-N/2)^2]$. Coupling this with Eq. [2] implies the following approximation to c(n), denoted as $c_{ap}(n)$:

$$c_{ap}(n) \cong 2^{N} \sqrt{\frac{2}{\pi N}} \exp[-\frac{2}{N} (n - N/2)^{2}]$$

Calculate an approximation to the sum $S_{ap} = \sum_{n=0}^{N} c_{ap}(n)$. [Hint: the integral $\int_{-\infty}^{\infty} dx \exp(-Ax^2) = \sqrt{\pi/A}$ may be of use.] Compare the result you obtain in this way with the exact summation formula $\sum_{n=0}^{N} c(n) = 2^{N}$.