Chemistry 1480, Hour Exam 1, Feb. 7, 2007.

This exam consists of four (4) problems. Please work them all, and provide brief descriptions of your reasoning as appropriate. GOOD LUCK! [Note the designation $\beta \equiv\left(k_{B} T\right)^{-1}$, where k_{B} is Boltzmann's constant and T is the absolute temperature in degrees K.]

1) $[25 \%]$ A spin- 1 particle interacting with a constant magnetic field B can be described as a three state system with energy levels $E=-\mu B, 0, \mu B$ (the constant μ is essentially the permanent magnetic moment of the particle). If the system is placed in thermal contact with a heat bath at temperature T,
a) Show that the partition function for the system is:

$$
q=1+2 \cosh (\beta \mu B)
$$

b) Obtain an expression for the average energy \bar{E} of the system. What is the value of \bar{E} when $T=\infty$?
c) Figure 1 shows three possibilities ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) for the graph of the system's constant volume heat capacity C_{V} vs. absolute temperature T. Which curve is qualitatively correct? What is the "fatal flaw" in each of the other two curves?

Figure 1.
2) [25 \%] Consider a monatomic ideal gas, whose entropy is described by the Sackur-Tetrode Equation.
a) Show that at a given pressure and temperature, the difference in molar entropies between a gas of atoms of type A and a gas of atoms of type B has the form:

$$
S_{m}^{(B)}-S_{m}^{(A)}=\kappa R \ln \left(m_{B} / m_{A}\right)
$$

where $S_{m}^{(A)}$ is the molar entropy of species A, and analogously for species B; furthermore, R is the ideal gas constant, and κ is a dimensionless numerical coefficient which you are to compute. [Note: Assume here that the ground electronic states of atoms A and B are nondegenerate.]
b) Given that the standard (i.e., $p=1 \mathrm{~atm}$) molar entropy of gaseous argon [atomic mass $=40 \mathrm{amu}$ at $100^{\circ} \mathrm{C}$ is $19.4 R$, use the result of part a) to deduce the standard entropy of gaseous xenon [atomic mass $=$ 131 amu at the same temperature. Please state your answer in units of R.
3) [25 \%] Consider a particle characterized by an infinite number of nondegenerate states corresponding to energy levels $E_{n}=n \varepsilon, n=0,1,2, \ldots$, with $\varepsilon>0$ being an energy parameter (i.e., the "quantum of energy"). If this particle is placed in contact with a heat bath at absolute temperature T :
a) Show that the partition function for this system is:

$$
q=\left[1-e^{-\beta \varepsilon}\right]^{-1}
$$

[Hint: $1+x+x^{2}+\ldots=(1-x)^{-1}$ for $\left.|x|<1.\right]$
b) Show that the average energy of the system is:

$$
\bar{E}=\varepsilon /\left(e^{\beta \varepsilon}-1\right)
$$

In particular, determine \bar{E} at $T=0$, and briefly explain your result.
c) Give a general formula for the entropy S of this particle at temperature T. [Hint: simply combine the results of parts a) and b) in an appropriate fashion.]

In particular, show that as $T \rightarrow \infty, S \rightarrow k_{B} \ln \left(k_{B} T / \varepsilon\right)$.
4) [25\%] In class we noted an "improved" version of Stirling's Approximation, namely:

$$
\begin{equation*}
\ln N!\cong N \ln N-N+\frac{1}{2} \ln (2 \pi N) \tag{1}
\end{equation*}
$$

a) Consider the binomial coefficient $c(n) \equiv N!/ n!(N-n)$! for a fixed value of N . Use the improved Stirling's approximation above to show that:

$$
\begin{equation*}
c(N / 2)=\frac{N!}{\left[\left(\frac{N}{2}\right)!\right]^{2}} \cong 2^{N} \sqrt{\frac{2}{\pi N}} \tag{2}
\end{equation*}
$$

b) In class, we used the simple Stirling's approximation (the right hand side of Eq. [1] without the last term) to show that for large $\mathrm{N}, c(n) / c(N / 2) \cong \exp \left[-\frac{2}{N}(n-N / 2)^{2}\right]$. Coupling this with Eq. [2] implies the following approximation to $c(n)$, denoted as $c_{a p}(n)$:

$$
c_{a p}(n) \cong 2^{N} \sqrt{\frac{2}{\pi N}} \exp \left[-\frac{2}{N}(n-N / 2)^{2}\right]
$$

Calculate an approximation to the sum $S_{a p}=\sum_{n=0}^{N} c_{a p}(n)$. [Hint: the integral $\int_{-\infty}^{\infty} d x \exp \left(-A x^{2}\right)=\sqrt{\pi / A}$ may be of use.] Compare the result you obtain in this way with the exact summation formula $\sum_{n=0}^{N} c(n)=2^{N}$.

