Theory of the First Stars: Why are they Massive? What are their Properties?

Dave Nero
1/23/2007

Outline and References

- The Formation of the First Star in the Universe
- Abel, T., Bryan, and Norman, 2002, Science, 295, 93
- Mass of Population III Stars
- Nakamura \& Umemura, 1999, ApJ, 515, 239
- The Stellar Initial Mass Function in Primordial Galaxies
- Nakamura \& Umemura, 2002, ApJ, 569, 549
- (Formation of the First Stars by Accretion)
- Omukai \& Palla, 2003, ApJ, 589, 677

Misc. Background

- "Population III"
- less than 1/1000 solar metallicity
-Why should the first stars be larger?
- Less efficient cooling => larger Jean's mass => larger stars
-When did they form?
- z~10-100

The Formation of the First Star in the Universe

- The physics should be "simple":
- Primordial gas simplifies the chemical and radiative processes
- No strong magnetic fields
- No other stars exist to influence the environment

$$
\begin{gather*}
e+\mathrm{H} \rightarrow \mathrm{H}^{-}+h v, \tag{1}\\
\mathrm{H}^{-}+\mathrm{H} \rightarrow \mathrm{H}_{2}+e, \tag{2}\\
\mathrm{H}^{+}+\mathrm{H} \rightarrow \mathrm{H}_{2}^{+}+h v, \tag{3}\\
\mathrm{H}_{2}^{+}+\mathrm{H} \rightarrow \mathrm{H}_{2}+\mathrm{H}^{+} . \tag{4}\\
3 \mathrm{H} \rightarrow \mathrm{H}_{2}+\mathrm{H} \tag{5}
\end{gather*}
$$

Simulation Setup

- Use an Eulerian structured AMR cosmological hydrodynamical code
- Initial conditions appropriate for a spatially flat CDM cosmology
- 6\% of the matter density contributed by baryons
- Zero cosmological constant
- Hubble constant of $50 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
- 3D volume 128 kpc on a side (co-moving)
- Periodic boundary conditions

Simulation Setup

- Mass resolution of $1.1 \mathrm{M}_{\text {sun }}$ for the dark matter and $0.07 \mathrm{M}_{\text {sun }}$ for the gas
- Follow chemistry of $\mathrm{H}, \mathrm{H}^{+}, \mathrm{H}^{-}, \mathrm{e}^{-}, \mathrm{He}, \mathrm{He}^{+}$, $\mathrm{He}^{++}, \mathrm{H}_{2}$, and H_{2}^{+}
- Also track radiative losses from atomic and molecular line cooling, Compton cooling, and heating of free electrons by the cosmic background radiation (in the optically thin limit)

Simulation Setup

- Stop when molecular cooling lines reach an optical depth of 10 at line center
- Time-dependent radiative line transfer in multiple dimensions is hard

600 pc
6 pc
0.06 pc
gas temperature: 6 kpc
600 pc

Results: Characteristic Mass Scales

- Four characteristic mass scales:
- Infall and accretion onto pregalactic halo (7×10^{5} $\mathrm{M}_{\text {sun }}$)
- Rapid cooling and additional infall ($4000 \mathrm{M}_{\text {sun }}$)
- Bonnor and Ebert mass (100 $\mathrm{M}_{\text {sun }}$)
- $M_{\mathrm{BE}}=1.18 M_{\mathrm{\odot}}\left(c_{\mathrm{s}}^{4} / G^{3 / 2}\right) P_{\mathrm{ext}}^{-1 / 2} c_{\mathrm{s}}^{2}=d P / d \rho=\gamma k_{\mathrm{B}} T / \mu m_{\mathrm{H}}$
- Protostar ($1 \mathrm{M}_{\text {sun }}$)

Results: Angular Momentum

- The collapse is not halted by rotational support for two reasons:
- The gas starts with little angular momentum
- Angular momentum is transported
- Attributed to shock waves during the turbulent collapse
- Transport is stronger than in present-day star formation due to higher cooling rate

Summary: The Formation of the First Star in the Universe

- Pregalactic object forms a single $100 \mathrm{M}_{\text {sun }}$ core surrounding a $1 \mathrm{M}_{\text {sun }}$ protostar
- No fragmentation observed
- Final mass of star unclear
- Estimate $70 \mathrm{M}_{\text {sun }}$ after $10^{4} \mathrm{yr}$
- $600 \mathrm{M}_{\text {sun }}$ after 5 Myr
- BUT a $100 \mathrm{M}_{\text {sun }}$ star will supernova within 2 Myr

Mass of Population III Stars

- Model filamentary, axisymmetric, ideal gas cloud
- Include $\mathrm{H}, \mathrm{H}^{+}, \mathrm{H}^{-}, \mathrm{e}^{-}, \mathrm{He}, \mathrm{He}^{+}, \mathrm{He}^{++}, \mathrm{H}_{2}$, and $\mathrm{H}_{2}{ }^{+}$
- Assume cooling from H (at T~104 K), H_{2} (at $\mathrm{T}<10^{4} \mathrm{~K}$), and from chemical reactions
- Follow the 1D hydrodynamics of the system

A Model for a Filamentary Primordial Cloud

- Initially, gravitational instability of cosmological density perturbations forms a "pancake-like" disk
- $\mathrm{M} \sim 10^{5-7} \mathrm{M}_{\text {sun }}$
- T~200-1000K
- Fragments into filamentary clouds
- Assume filaments are infinitely long cylinders

Numerical Results

Spindle Mass

Clouds with Low Initial Temperature ($\mathrm{T}_{0} \sim 100 \mathrm{~K}$)

$$
\begin{equation*}
\rho=\rho_{0}\left(1+\frac{r^{2}}{f R_{\mathrm{fil}}^{2}}\right)^{-2} \tag{15}
\end{equation*}
$$

Fragmentation of Primordial Gas Clouds

Conclusions: Mass of Population III Stars

- Find that the spindles are unstable against fragmentation
- Based on the size of the fragments, the first stars have a minimum mass of $3 \mathrm{M}_{\text {sun }}$
- Further accretion of the diffuse envelope can increase the mass to a maximum of $16 \mathrm{M}_{\text {sun }}$

The Stellar Initial Mass Function in Primordial Galaxies

- Include effects of HD cooling
- Can decrease T<100K*
- Include more species than previous model
- e, H, H ${ }^{+}, \mathrm{H}^{-}, \mathrm{H}_{2}, \mathrm{H}, \mathrm{He}, \mathrm{He}^{+}, \mathrm{He}^{++}, \mathrm{D}, \mathrm{D}^{+}, \mathrm{D}, \mathrm{HD}$, and HD^{+}
- Consider the following thermal processes:
- H cooling by radiative recombination, collisional ionization, and collisional excitation
- H_{2} line cooling by rotational and vibrational transitions
- Cooling by H_{2} collisional dissociation
- Heating by H_{2} formation
- HD line cooling by rotational transitions.

Model

- The system is again an infinitely long cylindrical gas cloud that collapses in the radial direction
- 1-D
- Model parameters are $\mathrm{n}_{\mathrm{c}, 0}, \mathrm{~T}_{0}, \mathrm{f}$, and $\chi_{\mathrm{H} 2,0}$

Results: Threshold H_{2} Abundance

Results:

Low-Density Filaments with High H_{2} Abundance

Results:

Low-Density Filaments with Low H_{2} Abundances

Results: High-Density Filaments

Dependence of the Fragment Mass on the Initial Model Parameters

Summary: The Stellar Initial Mass Function in Primordial Galaxies

- Steep boundary in fragment mass near $\mathrm{n}_{\mathrm{c}, 0}=10^{4}-10^{5} \mathrm{~cm}^{-3}$ for $\mathrm{f}>3$, regardless of the initial H_{2} abundance
- Implies IMFs in very metal deficient gas are likely to be bimodal
- Minimum mass is few $\mathrm{M}_{\text {sun }}$ (not sensitive to H_{2} abundance)
- Maximum mass is $\sim 100 \mathrm{M}_{\text {sun }}$ for $\chi_{\mathrm{H} 2,0}<3 \times 10^{-3}$ and $\sim 10 \mathrm{M}_{\text {sun }}$ for $\chi_{\mathrm{H} 2,0}>3 \times 10^{-3}$

Formation of the First Stars by Accretion

Mass-dependent Accretion Rate

Results: Formation of the First Stars by Accretion

- Final mass of star is potentially very large ($\sim 600 \mathrm{M}_{\text {sun }}$)
- If you assume star supernovas after 3 Myr , then mass is limited to $\sim 500 \mathrm{M}_{\text {sun }}$
- If you also include the likely formation of an $\mathrm{H}_{\text {II }}$ region, mass is limited to $\sim 460 \mathrm{M}_{\text {sun }}$

