Cooling Constraints on Circumstellar Disk Fragmentation

Dave Nero

UT Astronomy Bag Lunch

September 16, 2008

Background Results

Outline

2 Conditions for Fragmentation

- Gravitational Instability
- Cooling Time

Outline

2 Conditions for Fragmentation
• Gravitational Instability
• Cooling Time

Dave Nero Cooling Constraints

Core Accretion

- Pros:
 - Generally explains Solar System
- Cons:
 - Survivability of intermediate products
 - Long timescale

Image credit: Meg Stalcup

Disk Fragmentation

Pros:

- Fast
- Cons:
 - Requires very massive disk
 - Hard to form terrestrial planets

Image Credit: Ken Rice

Gravitational Instability Cooling Time

Outline

2 Conditions for Fragmentation

- Gravitational Instability
- Cooling Time

Gravitational Instability Cooling Time

The Toomre Q Parameter

$$Q = \frac{\Omega c_{\rm s}}{\pi G \Sigma}$$

Symbol	Definition
Ω	Angular orbital period (Keplerian rotation)
Cs	lsothermal sound speed
Σ	Disk surface density

Gravitational Instability Cooling Time

The Toomre Q Parameter

- $Q > 1 \Rightarrow \mathsf{Stable}$
- $Q \approx 1 \Rightarrow$ Marginally Unstable
- $Q < 1 \Rightarrow$ Unstable

Gravitational Instability Cooling Time

How Cooling Time Affects Fragmentation

Original Captions - From Rice el al. 2003, MNRAS, 339, 1025

Left:

Equatorial density structure for $t_{cool} = 5\Omega^{-1}$ and $M_{disc} = 0.1M_*$. The disc is highly structured with the instability existing at all radii. The density has, however, not increased significantly and the disc is in a quasistable state with heating through viscous dissipation balancing cooling. Right:

Equatorial density structure for $t_{cool} = 3\Omega^{-1}$ and $M_{disc} = 0.1M_*$. The disc is highly unstable and is fragmenting. The fragments are all gravitationally bound.

Gravitational Instability Cooling Time

What is a "Cooling Time"?

Definition

The cooling time is a measure of the timescale required to radiate away the excess energy from a point-source perturbation.

Gravitational Instability Cooling Time

Calculation of Cooling Time

$$t_{cool} = \frac{\Delta \text{Energy}}{\Delta \text{Luminosity}}$$

- The problem is essentially one of calculating the integrated ΔT
- Further assumptions:
 - plane-parallel atmosphere
 - 1+1D
 - Eddington approximation in a gray atmosphere

Example Cooling Time

- Optically thick limit
- No (or very small) accretion onto star
- Perturbation at the disk mid-plane

$$t_{cool} = \frac{3}{32} \frac{c_s^2}{\gamma_A - 1} \frac{1}{\sigma T^4} \frac{1}{\chi} \tau_{1/2}^2$$

Symbol	Definition
Cs	lsothermal sound speed
ŶΑ	Adiabatic Constant
χ	(Mean) Extinction
$ au_{1/2}$	Mid plane Optical Depth

Comparison with Monte Carlo Calculation

Gravitational Instability Cooling Time

Fragmentation Summary

- *Q* < 1
- $t_{cool} < 3\Omega^{-1}$
- These conditions place limits on Σ :
 - $Q \propto \Sigma^{-1} \Rightarrow$ lower limit
 - $t_{cool} \propto \Sigma^2$ (for thick disks) \Rightarrow upper limit

Outline

Background

2 Conditions for Fragmentation • Gravitational Instability • Cooling Time

Conditions for Instability

Exploiting Dust Sublimation

FU-Ori Outburst – Background

- Characterized by high accretion rate
 - Outshines star by factor of $\sim 100-1000$
- Duration of $\sim 100 \, yr$
- Accretion luminosity + high temperatures decrease t_{cool}
- High accretion rates must be associated with enhanced surface density

Surface Density Limits

Summary

- In order to fragment, a circumstellar disk must:
 - Be gravitationally unstable
 - Have a sufficiently short cooling time
- The disk around an average T-Tauri star is unlikely to fragment.
- FU-Ori outbursts showed promise for fragmentation, but more detailed calculations are making this look less likely.

Some Unanswered Questions

- Why does accretion luminosity have such a small effect on cooling time?
- How large of an effect could dust settling and/or grain growth have?
- Is there a regime where high surface densities allow fragmentation at large radii?
 - Very early in the star formation process?
 - Is this applicable to the formation of binary star systems?