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Abstract

In the light of recent work suggesting that the quantum probability
rule can be derived in the Everett interpretation via decision theory, I
consider what physical features of quantum mechanics make this possible.
I analyse the status of the probabiliy rule in three different models of
branching universes, each somewhat more complicated than the last, and
conclude that only in the last model — in which the branching structure,
as in quantum mechanics, emerges in a somewhat imprecise way from the
underlying physical reality — is it possible to derive a probability rule, or
indeed to behave in any rational way at all.

1 Introduction

The ‘probability problem’ of the Everett interpretation of quantum mechanics
has long been its bugbear, attracting more hostile attention even than the ‘pre-
ferred basis problem’ (now generally, though not universally, agreed to have been
solved via considerations of decoherence). If the universe splits after a measure-
ment, with every possible measurement outcome realised in some branch, then
how can it even make sense to talk about the probabilities of each outcome?
And if it does make sense, shouldn’t the probability of each branch be equal —
after all, even if a two-outcome experiment leads to branches of unequal weights,
there are still two branches, one for each result.

The problem has recently been revitalised by a seminal proposal from David
Deutsch (Deutsch 1999). Deutsch considers the probability problem from the
perspective of decision theory: he asks “given that I am about to undergo
branching, what preferences should I have between different courses of action?”
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That is: suppose that I know that I will have multiple descendants who see
different measurement results, and suppose that my actions now may have dif-
ferent consequences for different descendants (for instance, if I take a bet on
what the outcome of the measurement is going to be). Then: how am I to
balance the interests of my various descendants?

This provides a framework to make probability talk, as applied to branching,
meaningful: we can say that two groups of my descendants are equiprobable if I
am indifferent between actions that give some reward to the first set and actions
which give the same reward to the other set. (Whether this definition picks out
probability or just some facsimile is another matter; see Saunders (1998, 2005)
and Wallace (2005a, 2005b) for arguments that it is, and Greaves (2004) for a
dissenting view.)

Rather more surprisingly, Deutsch was able to prove that not only must
rational agents in a quantum universe make decisions by assigning probabilities
to the branches, they must assign probabilities equal to the quantum weights.
That is: the Born rule is derivable, within unitary (i. e. , Everettian) quantum
mechanics, from decision-theoretic principles.

Deutsch’s proof was heavily criticised when it first appeared (e. g. by Bar-
num, Caves, Finkelstein, Fuchs, and Schack (2000) and (Gill 2005)); I have
argued that such criticisms are mistaken in Wallace (2003b) and presented my
own hopefully-improved version of Deutsch’s proof in Wallace (2003c). But both
Deutsch’s proof and mine are quite heavily entangled with technical details of
quantum mechanics, such that it can be rather difficult to see in virtue of what,
exactly, Deutsch’s rather startling result actually holds.

This paper attempts to remedy this. It is not a mathematically rigorous
derivation of Deutsch’s result (see the above papers for that); rather, it is a
presentation of the ‘bare bones’ of the result. To clarify exactly what features
of quantum mechanics make the proof possible, I consider not just Everettian
quantum mechanics, but more generic models of ‘ branching universes: three in
all, each more similar than the last to full quantum mechanics.

The result of this investigation is, I think, interesting: quite specific and
subtle features of quantum mechanics are required for the decision-theoretic
derivation to be fully satisfactory. If we want probabilities in branching uni-
verses, not just any branching universe will do.

2 Life in branching universes

By a ‘branching universe’, I do not mean an indeterministic universe where the
past does not determine the future; I mean a universe which literally, physically,
and fairly frequently splits into multiple copies.

I shall present three different sorts of branching universe in the course of
this paper, but to make clear the sort of thing that I am considering, I shall
describe the first sort — the minimal branching universe, or MBU — here. Such
a universe is specified by the following:

2



1. A set U of possible instantaneous states — not of the entire universe,
but of a branch. Elements of U play the role in branching universes that
instantaneous states of the universe play in non-branching universes.

2. A relation < defined between pairs of elements of U , with the intended
reading of x < y being ‘y is in the immediate future of x’.

In terms of < we can specify a family of relations <n as follows: x <n y iff there
exist elements z1, . . . zn−1 of U such that x < z1 < . . . zn−1 < y (to be read as
‘x is n moments before y’. We can also define <∗ (to be read ‘x is before y) by:
x <∗ y iff for some n, x <n y. (Formally, this makes <∗ the transitive closure
of <). < has the requisite structure if we require

1. For any x and y, there exists z such that z <∗ x and z <∗ y (all states are
connected)

2. If x <∗ y then ¬(y <∗ x) (no closed loops)

3. If x < y and z < y then x = z (no recombining of branches)

4. For every x there is some y such that x < y (no last moment of time)

A pair (U , <) satisfying these constraints is intended to be a complete descrip-
tion of a MBU (hence ‘minimal’; other branching universes will be given a richer
structure). Time is discrete in the model but this is only for technical conve-
nience; nothing hangs on it.

Topologically such a universe would look something like a tree, bifurcating
in the future direction. an agent at any point in the tree would have a unique
past but multiple futures. (See figure 1 for an example.)

Figure 1: A branching universe

Time

What would it be like to be such an agent? In particular, what attitude
should he take towards an event which will lead to branching, and thus to
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multiple futures f1 . . . fn for him? One possible attitude might be uncertainty:
such an agent should be in the same sort of cognitive state that agents in non-
branching universes adopt when they know that one of f1 . . . fn will obtain but
are ignorant as to which. Call this possibility Subjective Uncertainty (SU), where
the ‘subjective’ acknowledges that from a God’s-eye view all is determinate.1

It was first proposed, so far as I know, by Saunders (1998), and I defend it in
Wallace (2005a).

An alternative, and in some ways more radical, attitude might be called,
by contrast, objective determinism (OD). Branching leads, deterministically, to
the agent having multiple future descendants. Rationally speaking, he should
act to benefit his future descendants, for exactly the same reason that people
in non-branching possible worlds would act to benefit their single descendant.
Situations of conflict may arise between the interests of his descendants (such
as when he takes a bet which pays off only in one branch), in which case he will
have to weigh up how much he wishes to prioritise each descendant’s interests.

It is not the purpose of this paper to resolve which of these perspectives
is more appropriate; I present them as background. My concern is slightly
different: what strategy should the agent adopt towards rational action? One
natural strategy is given by the

Probabilistic Hypothesis: In a branching universe, a rational
agent faced with a branching situation should assign a probability
measure across the branches, and should act in such a way as to
maximise expected utility with respect to that probability measure.

In particular, if he is offered the choice between a number of games
which lead to various of his future descendants receiving some fixed
reward, he should rationally prefer that game in which the reward is
given to the set of descendants with the highest total probability.2

My purpose here is to investigate to what extent the Probabilistic Hypothesis
can be defended in various sorts of branching universe, and to ask further: what
constraints on the probability measure are imposed by the physical structure of
the universe.

For future use, let us identify two ways in which the Probabilistic Hypothesis
might be threatened:

Threats of probabilistic failure: Probabilistic failure would occur if there
existed some circumstance in a branching universe in which agents were
either rationally required, or at any rate rationally permitted, to violate
the Probabilistic Hypothesis. Probabilistic failure does not in any way
make a branching universe hostile to rational agents; it simply means that
they will have to use something other than the Probabilistic Hypothesis
as a guide to action.

1But it need not be linked to first-person expectations: ‘there will be a sea battle tomorrow’
might be as uncertain as ‘I will see spin up’.

2In fact, most decision theorists accept that this ‘special case’ implies the general result,
given certain technical assumptions: it does not seem possible to give quantitative meaning
to the utility of an action other than via the odds we would accept for it.
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Threats of incoherence: Incoherence would occur if there existed some cir-
cumstance in a branching universe in which no rational action at all was
possible — that is, some circumstance in which any course of action vio-
lated some intuitively reasonable rationality principle. Widespread inco-
herence would not indicate that a branching universe was metaphysically
impossible, but it would mean that intelligent life (at least of our kind)
could not really function in such a universe.

We can also distinguish between widespread and localised failure of the
Probabilistic Hypothesis. If either incoherence or probabilistic failure occurs
in reasonably generic circumstances then the Probabilistic Hypothesis must be
abandoned wholesale; conversely, if the Probabilistic Hypothesis fails only in
extremely specialised and contrived situations then it remains a useful guide to
action emphceteris paribus.

3 Decision-theoretic assumptions

I will be concerned (at least to begin with) with a somewhat simplified decision-
making situation. An agent will be asked to choose between a variety of possible
futures (involving variable amounts of branching, and variable events on each
of the branches). Crucially, notice that here ‘futures’ means future states of the
entire universe, not just specific future branches.

I shall assume that the rewards given to the agent’s future selves are in the
forms of tokens of some description, to be cashed for items of genuine value
at some later time tcash. The problem may be further simplified by assuming
that there is only one sort of token. (The token may be thought of as a large-
denomination banknote which may be spent only after tcash.)

I shall require the agent to conform to the following principles:

Dominance: If two possible futures A and B have the same branching struc-
ture and differ only in that branch A leads to a reward being given and
B does not, then A is preferable to B.

Preparation Indifference: If two possible futures are physically identical af-
ter some time t which is prior to the token-cashing time tcash, then the
agent is indifferent between them.

Constancy: If two possible futures each lead to the token being given out on
either all branches or on none, the agent is indifferent between them.

How are these axioms to be justified? Preparation Indifference is a con-
sequence of the stylised nature of the problem as I have formulated it: the
only outcomes on which the agents preferences depend are possession or non-
possession of tokens and the tokens are of no use to the agent prior to tcash.

Dominance at first sight appears to follow from the assumption that I care
about the interests of my future selves. Suppose I am offered one of two bets.
The first bet I know will certainly benefit all of my descendants at least as
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much as (and possibly more than) the second; therefore I should take the first
in preference to the second.

Though this seems persuasive (to me at any rate) it has been challenged
by Adam Elga3, who points out that it is in conflict with another intuitively
plausible idea: that we might seek to maximise diversity in our successors. For
instance, suppose that I might have a successful career either as a musician or
a physicist. I have some preference for becoming a physicist, but I’d rather
become a physicist in some branches and a musician in others, than a physicist
in all branches.

You either get this intuition or you don’t. I don’t, as it happens, but plenty
of people do, and so it deserves a reply. Mine comes in two stages:

1. Something similar actually happens in ordinary decision-making, even
without the assumption of branching. I might have a last square of choco-
late which I can give to one of two friends. If I actually had to choose I’d
give it to Alice rather than Bob . . . but I’d much rather toss a coin and
decide at random — apparently in violation of dominance.

This is not particularly mysterious, nor particularly difficult to incorporate
into decision-theory without contradicting dominance. We should just
acknowledge that the options are underdescribed: the coin-tossing has as
its two outcomes Alice and Bob getting the chocolate as a result of a fair
process, and I prefer either of these outcomes to ‘Alice gets the chocolate
because I chose to favour her’. The preference can just be incorporated in
a richer description of the set of consequences.

2. We might get around this by stipulating that the agent forgets that the
decision was made in the first place. But in that case, he will just reverse it
— after all, if I’d rather be a physicist than a musician and momentarily
decide to be a musician, I’d be irrational not to change my mind back
again.

It is possible to come up with examples to which neither of these responses
seem to apply (in the discussion of Elga’s proposal in Oxford, one participant
suggested an agent who chooses to start one of two different new civilisations
on a newly terraformed planet) but these rapidly seem to become extremely
contrived, and don’t seem to apply to everyday decision-making situations.

Another fairly contrived example is ‘quantum suicide’, or ‘quantum russian
roulette’, for many years a standard after-hours discussion topic for foundation-
ally inclined physicists and recently discussed in print by Lewis (2001), Lewis
(2000), Papineau (2003), and Tappenden (2004). Suppose that I am utterly
selfish, caring nothing of others, and that I am offered a large bet which I re-
ceive only on a few branches: in all other branches I am instantly and painlessly
annihilated. Since I know that all of my successors will receive the reward (no
matter that in many branches I will have no successors at all), I should accept
the bet. If this argument is correct then it violates Dominance: the action where

3In a seminar in Oxford, not yet published so far as I know.
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I get the reward in all branches dominates the one where I am annihilated in
some branches, but the quantum roulette argument suggests that I should be
indifferent between the two.

I am myself sceptical about quantum roulette, but for our purposes the
important point is that whether or not it is rational, it occurs only in highly
specialised contexts: those where I am instantly annihilated if I lose the bet,
and where in addition I care about nothing except my own feelings.

Quantum roulette, and the Elga variety-driven counter-example, offer what
section 2 called ‘localised threats of probabilistic failure’. That is, the threat
they pose to the probabilistic hypothesis applies only in very specialised circum-
stances (and, crucially, in circumstances which are not at all connected to the
experiments which have been used to test quantum mechanics!) From here on I
shall assume that Dominance remains justified in ‘generic’ circumstances, even
if we can occasionally contrive situations where it fails.

The justification of Constancy presents rather more serious problems. In a
branching universe, Constancy is equivalent to Branch indifference, the principle
that an agent is indifferent to the occurrence of branching provided that each of
his successors receives no reward or punishment subsequent to the branching.
And this is far from obvious. It does not seem at all unreasonable to form the
view that one wishes to have (for instance) as many successors as possible.4

Is it in fact unreasonable? It depends upon the details of our branching
universe, but there are two strong objections available in any branching universe
where branching is occurring all the time:

1. The epistemic objection: to take decisions in such a universe, an agent
who was not branch indifferent would have to be keeping microscopically
detailed track of all manner of branch-inducing events (such as quantum
decays, in an Everettian universe) despite the fact that none of these
events have any detectable effect on him. This is beyond the plausible
capabilities of any agent.

2. The small-world objection: it has long been recognised (see, e. g. , Savage
1972) that decision-making will be impossibly complicated unless it is
possible to identify (in at least a rough-and-ready manner) a point after
which the dust has settled and the value to an agent of consequences can
actually be assessed. But if an agent is not branch indifferent, then such
a point will never occur, and he will be faced with the impossible task
of calculating how much branching will occur across the entire lifetime of
the Universe (contingent on his choice of action) in order to weigh up the
value, now, to him of carrying out a certain act.

Both of these objections rely on the assumption that a rational strategy
must actually be realisable in at least some idealised sense. In previous work
(Wallace 2003c) I took this as self-evident, but to my surprise this has not

4If we are justified in adopting the SU view described in section 2, Constancy is actually
compulsory: branch indifference just becomes indifference between two actions each of which
is certain to give us the same fixed reward.
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generally been accepted (mostly this has emerged in conversation; however, see
also Lewis 2003). I therefore offer a brief defence:

1. Decision theory is something of a hybrid. It is to some extent normative
(that is, it tells us what we should do, and exposes us to rational criticism
if we violate its precepts); it is to some extent descriptive (that is, it
provides an idealised account of actual decision-making). Both of these are
impossible if decision theory instructs us to do something wildly beyond
even our idealised abilities.

2. If we are prepared to be even slightly instrumentalist in our criteria for
belief ascription, it may not even make sense to suppose that an agent
genuinely wants to do something that is ridiculously beyond even their ide-
alised capabilities. To adapt an example from Wallace (2003c), suppose I
say that I desire (ceteris paribus) to date someone with a prime number
of atoms in their body. It is not even remotely possible for me to take
any action which even slightly moves me towards that goal. In practice
my actual dating strategy will have to fall back on “secondary” princi-
ples which have no connection at all to my “primary” goal — and since
those secondary principles are actually what underwrites my entire dating
behaviour, arguably it makes more sense to say that they are my actual
desires, and that my ‘primary’ desire is at best an impossible dream, at
worst an empty utterance.

Unconvinced? Have patience: we shall see in section 8 that in quantum
mechanics (and universes with a similar sort of branching) there is a much more
powerful defence of constancy available, which does not rest on these practical
issues. For now, note only that although Constancy is not prima facie obvious,
it is extremely natural, at least in a universe where branching is ubiquitous.

4 Decision making in minimal branching uni-
verses

To begin with, consider the simple model of a branching universe described
above: the ‘minimal branching universe’, or MBU, in which the branching struc-
ture is a complete description of the universe.

In particular, consider the following example of an MBU. There is exactly
one splitting event, in which the world splits in two, and it is about to occur. In
the first branch (say) some subatomic particle has decayed; in the second, the
particle remains undecayed.

An agent must choose between two actions. If he takes action A, he will
be rewarded by receiving a thousand dollars (i. e. , the token) iff the particle
decays. Action B has the opposite consequence: the thousand-dollar reward is
given iff the particle does not decay. The agent has no interest at all in whether
or not the particle decayed except insofar as it affects his reward, and the bet
will be paid within a millisecond of the decay taking place.

8



The twist is this: the physical process by which the bet is paid has been
designed to erase all knowledge of whether or not the particle decayed, and also
all knowledge of which bet was taken. This means that according to whether the
agent chooses A or B, the possible states of the Universe are given by Figures
2 and 3:

Figure 2: Choice A

Agent chooses A

Decay

Payoff

Agent with cash

No decay

No payoff

Agent with nothing

Timet0t1

Observe that:

1. Choices A and B differ only between t0 and t1: after t1 they are completely
identical.

2. The agent is completely indifferent to anything that happens between t0
and t1. (This may seem counter-intuitive, in that he cares about getting
the thousand-dollar bill, and that happens before t1. However, he only
values the cheque insofar as he gets to keep and spend it after t1; the value
to him of possessing it just in the one millisecond between the decay and
t1 is nil. In the formal ‘token’ talk of the previous section, tcash is clearly
greater than t1.)

3. Therefore, by Preparation Indifference, the agent is indifferent between
choice A and choice B: that is, at least in this circumstance the agent is
indifferent between a bet on the decay and a bet against the decay.

4. Therefore, the agent’s preferences fit the Probabilistic Hypothesis, with a
probability of 0.5 for each branch. That is, the agent regards the decay
and its absence as equiprobable.

Furthermore, the knowledge erasure used in the above argument plays no
essential role. For the agent doesn’t care, per se, which bet he placed once he
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Figure 3: Choice B

Agent chooses B

Decay

No payoff

Agent with nothing

No decay

Payoff

Agent with cash

Timet0t1

gets his reward, nor is he interested in whether or not the decay occurred. That
is, each post-branching agent is indifferent to the erasure. If (banknote-plus-
erasure) has the same value as (banknote) and (no-banknote-plus-erasure) has
the same value as (no-banknote), it follows that removing the erasure from the
specification of A and B does not change the agent’s indifference between them.

It isn’t even important whether the erasure is physically possible. (In realistic
physical theories, I suspect, it wouldn’t be: the information would be dispersed
so thoroughly that no-one could recover it, but in principle it would still be
there). For suppose x1, . . . , xN are all the possible states where the agent has
received his cheque and where the information about the bet is sufficiently
thoroughly dispersed that the agent has no access to it; suppose y1, . . . yM ,
similarly, are all the possible states where the agent got no cheque and where
all the information has been dispersed. Then the dispersal process in choice A
is one of the MN processes

(thousand dollars+decay)−→ (xn);
(thousand-dollars+no decay) −→ (ym)

and (since the agent is indifferent to dispersal) he is indifferent as to which
process it is. (If he knows sufficient physics he may know that only one is
actually possible, but this doesn’t affect his ignorance about, and indifference
to, which one is the possible one. It follows that he is indifferent between the
actual process which occurs when he chooses A, and the (probably physically
impossible) process which leads to two branches, one in state x1 and one in
state y1.

Similarly, the agent is indifferent as to which dispersal process is used in case
B, and (applying the same logic) is indifferent between choice B and a process
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which again leads to two branches one in state x1 and one in state y1. It follows
again that he is indifferent between A and B.

It might even be the case that erasure must itself cause branching. No
matter: by constancy an agent is indifferent between (a) a branching event
each of whose post-branch states is one of x1 through xn, and (b) the occurrence
of x1 with certainty.

This is a rather striking result. In an MBU, an agent is rationally com-
pelled to assign equal probability to each branch in a two-way branching event.
No actual assumption of indifference between the branches was made: rather,
the result was derived from existing principles of decision-theoretic rationality
which don’t presume a branching Universe at all. Furthermore, the result easily
generalises to arbitrarily many branches: any bet on one branch can be made
physically identical to a bet on another branch via the erasure mechanism, and
therefore any two branches must be regarded as equally likely. (If the number
of branches is finite (equal to N , say), this entails that the agent’s beliefs are
uniquely represented by assigning probability 1/N to each branch.)

To achieve some grasp on how this can have occurred, recall that historically
symmetry has always rivalled frequency as a constraint on probabilities: we
assign each face of a die probability 1/6, for instance, because (somehow) they
are correctly regarded as being related by a somehow-relevant symmetry. But
in the absence of branching, this argument falls foul of the observation that
ultimately one event or the other must actually occur, breaking the symmetry.
In modern physics we normally get around this by requiring either that the
theory is stochastic (which reintroduces objective chance as primitive) or that
the probability distribution over initial conditions obeys the symmetry (which
begs the question).

In a branching universe, on the other hand, no single outcome occurs. It is
therefore possible that the symmetry constrains the probability without further
ado. Of course, the problem is that the two-way splitting event described earlier
isn’t really completely symmetric: tiny details, irrelevant to the agent (like: did
the atom actually decay) break the symmetry. It would have been tempting to
resolve this, rather than via an excursion into erasure and dispersal, via some
principle like

Irrelevancy neglect: In a branching universe, any details of the future
which are irrelvant to all of my successors should be irrelevant to me
right now.

However, it is at least interesting, and will be crucial later, that we can establish
the equiprobability result without adopting irrelevancy neglect.

5 MBU theories are generally incoherent

Consider the following scenario in an MBU, contemplated by some agent at t0.
At t1 some coin is flipped (or some other chance process occurs), inducing a
two-way branching process whose branches can be labelled ‘H’ and ‘T ’. In the

11



T branch nothing further occurs; in the H branch a second coin is flipped at
t2, leading to two further branches labelled HH and HT . The time between
t0 and t2 is measured in seconds, and the agent receives no relevant rewards or
punishments in this time. (See Figure 4).

Figure 4: Iterated 2-way branching

Agent contemplates

1st flip

H

2nd flip

H

HH

T

HT

T

T

Timet0t1t2

The question is: what probability should the agent, at t0, ascribe to the first
coin landing heads? The obvious answer is 1/2: the coin-flip leads to two-way
branching, and by the arguments of the previous section this requires probability
1/2 for each outcome. Whether or not the second coin is flipped does not affect
the first coin, so this result is unchanged by the second flip.

But now consider Figure 5. Here, three branches again arise, and are again
labelled HH, HT and T ; but they arise from a single, three-way branching
event. By the same arguments each must have probability 1/3, so here the
chance of the first coin being heads is 2/3.

But now suppose the agent is betting on whether the coin lands heads, and
suppose the reward is given long after t2. Then the post-t2 states in figures 4
and 5 are identical up to the erasure of irrelevant data. By the arguments of
the previous section, and via the identical-futures principle, it follows that
the agent must be indifferent between betting on heads in the first scenario,
and betting on it in the second. But this is incompatible with the assignation
of different probabilities to the two cases.

I conclude that in general, MBUs in which iterated branching is possible are
not compatible with any consistent allocation of probabilities to the branches
without violating one or more decision-theoretic axioms. In fact, the situation
is worse than this: since the argument of section 4 actually compels us to accept
the contradiction above, there is no rational strategy at all — probabilistic or
otherwise — compatible with the decision-theoretic axioms. In the terminology
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Figure 5: 3-way branching

Agent contemplates

3-way flip

HH HT T

Timet0t1t2

of section 2, this is a threat of widespread incoherence: it shows that rational
life is impossible in any MBU in which branching occurs at all frequently.5

6 Weighted branching

If all branching universes were MBUs, then this paper would simply be reductio
of the idea that branching can be interpreted as uncertainty. But in fact there
are other sorts of branching theories. Consider next the weighted branching
universes, or WBUs. In theories of this kind, the universe is not completely
defined by specifying the branching structure of nodes. Rather, to each node n
we must also assign a weight w(n) (to be regarded as a new categorical property
of that node). Weights should be positive elements of some ordered commutative
group (on first reading, just regard weights as real numbers between 0 and 1)
and — crucially — they are required to satisfy the following principle:

Weight additivity If x is a node and y1, . . . yn are nodes satisfying

1. x <∗ yj for each j (each yj is futurewards of x);

2. not yi <∗ yj for any i, j (no two yi are in the same branch)

3. if B is a maximal <∗-ordered subset of S (i. e. , a branch) then B
contains some yi

then w(x) = w(y1) + . . . w(yn).

5There is one prima facie loophole: I made use of Constancy at one point in the proof of
section 4, and it is perhaps open to an inhabitant of an MBU to reject it. That this loophole
can be closed, I leave as an exercise for the reader.
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Now, suppose we consider again ‘Choice A’ and ‘Choice B’ from section 4:
that is, we consider bets on the decay or otherwise of an atom whose decay
induces 2-way branching. This time, however, suppose that we are in a WBU
and that the decay and no-decay branches have weights x and y respectively.
Now the post-t2 states of the Universe, after the information about the bet has
been erased, are

Choice A: One weight-x branch in which the agent receives a thousand dollars;
one weight-y branch in which the agent receives nothing.

Choice B: One weight-y branch in which the agent receives a thousand dollars;
one weight-x branch in which the agent receives nothing.

(Note that as a consequence of Weight additivity, the erasure process cannot
affect the weight of the branch(es) in which a reward is given.)

It follows that in a weighted branching universe, an agent is rationally com-
pelled to regard two branches as equally likely only provided that they have equal
weight. This dissolves the paradox of the previous section: there is no allocation
of weights whereby the H and T branches have equal weight after t1 and yet
the HH, HT and T branches have equal weight after t2.

This takes us a good way towards establishing the Probabilistic Hypothe-
sis for WBUs. In fact, it takes us a good way towards establishing a much
stronger principle, which we might call the Weight Principle: in a WBU, agents
are rationally compelled to set their probabilities proportional to the weights.
(Certain assumptions about the richness of the branching structure would also
be required to prove the result in full generality.)

7 What are weights?

By replacing an MBU by a WBU, we appear to have defeated the threat of
incoherence identified in section 5. But one might still feel uneasy. What,
after all, are these weights, and why on Earth should we care about them in
decision-making?

One reason to be suspicious of them is that two WBUs might differ only by
a different assignation of weights to the various nodes. This being the case, how
could an agent possibly know that he was in one WBU rather than the other?

This objection requires us to engage with the complicated question of how we
might test a branching-universe theory. A full answer to this would lie beyond
the scope of this thesis (see Wallace (2005a) for more detailed discussion) but
in short, we require that the theory predicts that it is rational (ceteris paribus)
to expect to find oneself in a high-weight world.

So: suppose one is about to carry out a long sequence of experiments whose
results are uncertain (and so which, on the assumption that the universe is a
WBU, will lead to branching). For convenience, we suppose that weights are
real numbers and that we have proved the Weight Principle in full generality
(i. e. , not just for equal-weighted branches).
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Suppose that some possible sequence of outcomes x is given high weight
on the assumption that we live in WBU1, and low weight on the assumption
that we live in WBU2. Then an agent who accepts WBU1 should expect (with
very high subjective probability) that he will experience x and one who accepts
WBU2 should expect (again with very high subjective probability) that he will
not experience x. A standard application of Bayes’ Theorem tells us that, unless
he’d previously given extremely high subjective probability to being in WBU2,
if he experiences x then he ought tentatively to conclude that he is in WBU1.

To be sure, in reaching this conclusion he implicitly accepts that there are
many other low-weight copies of him who have not seen x, and who may there-
fore very well have reached the wrong conclusion. But why should he care about
these poor unfortunates? After all, they have low weights, and we’ve proved
that rational agents don’t care about low-weight situations.

So I do not think it is correct to regard weights as experimentally inaccessible.
No experiment can determine for certain what the weights are, but this is
already the case in stochastic theories, and they are little the worse for it.

But there is another, more decision-theoretic problem with the WBUs. How-
ever elegant the proofs, one is still left wondering why rational agents should
give a damn about this ‘new categorical property’.

To make this vivid, suppose (never mind how) that it is possible to build a
‘weight detector’, which registers the weight of a node on some sort of dial. Why
on earth should an agent care about the reading on that dial? It doesn’t impact
at all on his hopes and fears, his loves and hatreds, his fame and fortune, or
anything else which people normally value. And if he doesn’t care, why should
he assign different probabilities to branches with different readings on the dial?

This conundrum cannot be turned into an outright proof of the irrelevance
of weights by erasure/dispersal arguments, as we did before: it’s an essential
consequence of weight additivity that weight cannot be changed except by in-
ducing branching. But it is still troubling: granted that it isn’t in fact physically
possible to change the weight of a branch, the fact that an agent would (were
it possible) be indifferent to the choice of doing it is still worrying.

The worry can be given precise form by noting that caring about the weights
in deciding how to bet on branching is in violation of the future indifference
principle: since each of my future descendants is indifferent to the weight of his
node, then I should right now be indifferent to each of these weights.

The robust response here would be to say: very well, so much the worse for
the future-indifference principle. If accepting it would force our decision-making
process into incoherence, we’d better not accept it! But one might equally well
argue that the principle is as plausible as any other decision-theoretic arguments,
so that we have another widespread Incoherence Threat of the kind discussed in
section 2 (albeit perhaps a weaker one than in the MBU case). Having reached
this rather unsatisfactory conclusion, we leave the WBU theories.
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8 Emergent branching

Our third class of branching universe, the emergent branching universes (EBUs)
are structurally quite dissimilar to MBUs and WBUs. At the most fundamental
level of description, EBUs do not involve branching trees of classical-world-like
states at all: they involve the deterministic and unbranching evolution of a
system which does not look in the slightest like our ordinary world.

The branching in EBUs, as their name suggests, emerges from the underly-
ing system as a higher-level, approximate description — rather as higher-level
ontology in general emerges from lower-level descriptions (see Dennett (1991) for
more on this in general, and Wallace (2003a) for the particular case of quantum
theory). A description of an EBU in terms of branching classical worlds is per-
fectly valid, provided it is understood that it is only an approximate description,
leaving out some details and glossing others.

What does this ‘approximate description’ look like? It looks much like a
WBU (a branching tree of classical states with a weight attached to each node)
with one crucial distinction: any such description must be understood as a
coarse-graining of a finer description which is itself emergent from the ‘funda-
mental’ EBU.

By a coarse-graining: I mean that each of the nodes of the emergent WBU
must be regarded not necessarily as describing a single state, but as correspond-
ing to an imprecise description fitting several. A more precise description would
break the nodes down into many nodes, leading to a more detailed and compli-
cated tree structure. (See figure 6 for an illustration of this; the nodes of the
coarser-grained description are shown as circles around the finer-grained nodes
to which they correspond.

Figure 6: A coarse-graining

ABCDEFABCDEFCoarse-grain

To further explicate the notion of a coarse-graining, we can define an event
as a set of states of S (the terminology is taken from decision theory). An event
might be characterised by some description (e. g. , “there is a cat on the mat”,
or “X wins at least a thousand dollars”) or it might be indescribable in any
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simple way. In any case, a coarse-graining of a WBU can now be described as a
WBU-like branching structure (complete with weights at each node) but with
events rather than states for nodes.

In ‘genuine’ WBUs, the notions of ‘coarse-graining’ and ‘event’ are at most
a technical convenience: for foundational work we might as well work with the
maximally fine-grained description. But in EBUs, crucially (and by definition)
there is no fine-grained description. Any emergent WBU description may be
replaced by a finer-grained description, the whole process terminating only at
the (inherently ill-defined) point at which the usefulness of the emergent WBU
description begins to fail and we are forced to resort to the ‘fundamental’ de-
scription. As such, the emergent branching description of an EBU is always a
tree of weighted events, and the ‘states’ drop entirely out of the picture.

How should a rational agent in an EBU choose to act? Such an agent’s best
description of his world will be in terms of some emergent WBU description, so
the decision-theoretic results of the last section apply in large part. There are,
however two crucial differences.

Firstly, Constancy is unavoidable for an agent in an EBU. For Constancy is
threatened for a rational agent only by the possibility that such an agent cares
about the raw number of his successors, and ‘number of successors’ is simply not
defined in quantum mechanics or in any EBU. For although any given WBU
description gives a definite value for the number of branches futurewards of
any node, that value will in general fluctuate wildly as we move to successively
finer-grained descriptions. (Put another way, all an agent can count up are the
number of future chains of events, and an event can always be subdivided.)

On the reasonable assumption that an agent cares only about features of
physical reality and not about artefacts of a particular approximate representa-
tion of that reality, we conclude that no such agent can care about the number
of his successors. It is not that ‘number of successors’ is empirically inaccessi-
ble (as, I argued in section 3, is likely even in an MBU). It is that ‘number of
successors’ is just meaningless.

Secondly, ‘weight’ is not a property of individual agents or their branches in
an EBU. It is meaningful to talk about ascribing a weight to a node, but because
of the indefinite possibility of fine-graining all we can do is say ‘the weight of
event E is w’. Statements like ‘branch # 20445 has weight w’ are meaningless
because the idea of referring to a specific branch is itself meaningless.

Recall that at the end of the last section, I observed that the Probabilis-
tic Hypothesis clashes with the intuition (formalised in the Future Indifference
Prinicple) that if there is some property of an agent’s branch to which he is
indifferent, that property should not have featured in the agent’s previous de-
cision making. But ‘weight’ in an EBU is no longer any such property. It does
not make sense for an agent to refer to ‘the weight of my branch’: all he can
refer to are the (differing) weights of any number of events whose descriptions
conform to his surroundings. As such, the threat from the Future Indifference
Principle does not apply: an agent has no branch weight of his own to be indif-
ferent to. (To repeat the thought experiment of a ‘weight detector’: in an EBU
is it conceptually and not just practically impossible to build such a thing.)

17



As such, the decision-theoretic situation in an EBU is far more satisfactory
than in a WBU. In the latter case we identified two potential problems: the
lack of a pressing motivation for Constancy, and the feeling that weights, being
properties of an agent about which he has no interest, ought to be decision-
theoretically irrelevant. Neither problem applies to EBUs: the former because
lack of any determinate notion of branch number forces Constancy on us; the
latter because weights are no longer properties of particular branches. The
Probabilistic Hypothesis is unproblematic in an EBU, as is section 6’s proof
that rational agents set their probabilities proportional to the weights.

9 Quantum mechanics

The (rather predictable) punchline, of course, is that Everettian quantum me-
chanics is an emergent branching universe. For the branching structure in quan-
tum mechanics is picked out by the process of decoherence, and (as I discuss
in more detail in Wallace (2003c)) the decoherence basis has the no-finest-grain
property described above. We can always fine grain the decoherence basis by
refining the accuracy with which it is described or by including more of the
environment; the price is that the level of decoherence between basis elements
may fall, eventually leading (at an inherently ill-defined point) to failure of
decoherence and the requirement that we revert to the full, unitary description.

The correspondence with the structure of EBUs can be made explicit by
using the consistent histories formalism. Working in the Schrödinger picture,
let H be the space of projectors used to build up some particular decoherent
and quasiclassical space of histories.6 Elements of H will in general be infinite-
dimensional projectors, and it will generically be possible to fine-grain them
without losing decoherence; trivially, it will also be possible to coarse-grain
them. (As a concrete example (due to Saunders (2005)) suppose that decoher-
ence selects the configuration-space basis of some set of particles. The projectors
will then project onto subsets of configuration space, and in general it will be
possible to fine-grain these subsets without loss of decoherence.)

Now, consider the Boolean algebra AH generated from H by the admissible
fine-grainings and the coarse-grainings. Any collection of elements P̂ i from AH
such that

∑
i P̂ i = 1̂ will constitute the basis for a quasiclassical history space,

and thus a possible branching-universe description of the quantum state.
In general this algebra, insofar as it is well-defined at all, will be nonatomic:

there will be no ‘finest’ graining before decoherence fails. Mathematically we can
perhaps idealise AH as infinitely fine-grainable, with the caveat that eventually
(as we continue to look at finer and finer grainings) decoherence will fail and
the projectors will no longer yield a valid branching-universes description.

(As a concrete example (due to Saunders (2005)) suppose that decoherence
selects the configuration-space basis of some set of particles.7 The algebra AH

6I assume for technical convenience that the set H does not vary with time.
7Note that it is the configuration space of that set of particles that we are considering, not

the configuration space of the universe as a whole: many particles are likely to be relegated
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will then consist of all projectors onto open subsets of configuration space. When
these projectors are taken as too fine-grained the decoherence condition will
cease to apply and we will lose quasiclassicality, but there is no precisely-defined
point at which this occurs.)

Quantum mechanics, then, defines three regimes of coarse-graining. The
first, finest-grained, regime is one in which the ‘branching-universe description’
is purely mathematical: decoherence fails and so there is no sense in which the
branching description captures an emergent branching reality. In the interme-
diate regime decoherence is applicable and the emergent branching structure is
accurately identified; in the third and coarsest regime, the graining is too coarse,
and unambiguously distinct chunks of macroscropic reality (such as states in
which a cat is alive and states when it is dead) are lumped together. It is only
the middle regime which really describes the emergent classical branches, but
— crucially — that regime has boundaries which are inherently ill-defined.8

So: since quantum mechanics is an EBU, the Probabilistic Hypothesis holds
for it, and rational agents in a quantum universe must maximise expected utility
with respect to quantum-mechanical weights. In fact, it is even more apparent in
QM than in a ‘generic’ EBU that the weight is a physically significant player and
not just some function placed over an existing branching structure (as threat-
ened to be the case in WBUs). For the branching structure of the quantum
state, at whatever grain it is viewed, emerges from the underlying unitary dy-
namics on Hilbert space, and the latter arena cannot even be specified without
the inner product, from which the weight derives.

10 Conclusion

In branching universes, probabilities emerge from symmetries. If an agent is to
be split into n copies which are identical except for erasable irrelevant details,
he must value each of these future descendants equally. This leads to intertem-
poral incoherence unless the ‘minimal’ branching structure is supplemented by a
notion of ‘weights’ for each branch. If it is so supplemented, a rational agent in
the resulting universe must value his successors in proportion to their weights.
That is, in such a universe the weights play the same role in decision-making

to ‘the environment’ and traced over.
8The philosophical problem of how to understand ‘inherently ill-defined’ predicates has

recently received considerable attention from philosophers of language (see (Keefe and Smith
1997) for a recent anthology). One currently-popular strategy, empiricism (recently defended
by Williamson (1994)) poses a prima facie threat to the strategy I describe above: according
to empiricism, the boundaries of application for ‘vague’ predicates like ‘quasiclassical’ are
actually perfectly sharp, but language users do not and cannot know where they are. This
would seem to suggest that, contrary to my argument, there really is a ‘finest grain’ description.

I am inclined to respond to this threat as follows: rational agents (as was argued in section
3 must choose their strategies so as to be implementable in at least idealised circumstances.
Even if (contrary to my own view) we ought not reason to criticise someone for caring about
branch number when there is not the slightest practical prospect of determining it, surely our
criticisms have force if determining it is in principle impossible, as empiricism would have it?
However, the matter probably deserves further study.

19



as ‘probability’ does in non-branching universes (whether or not the weights
should just be identified as probabilities).

This leads to tension with the principle that since agents do not care about
their own branch weights, they should ignore the branch weights of their suc-
cessors — a principle which, if accepted, leads to intertemporal incoherence as
before. The overall framework is also dependent on the principle of indifference
to branching per se, without which the ‘probabilities’ of future branches would
not add up to one.

However, suppose that the weighted branching structure is not fundamental,
but emerges from some underlying physical reality in such a way that there is
no ‘finest-grained’ structure of branches but only a vaguely-defined cutoff point
below which ‘branching’ talk ceases to be useful (as is the case in quantum
mechanics). Then neither of these problems arises: indifference to branching is
forced upon us by the lack of any coherent notion of ‘branch number’, and the
objection that we should not care about our own weights is removed when it is
realised that weights do not attach to individuals at all.

The idea that our future is not determinate but consists of a myriad branch-
ing possibilities appears fanciful to some, appealing to others. It is interesting,
though, that when we consider how probability may be fitted into such a scheme
we are forced to place some very strong structural constraints on the nature of
that branching future. It is more interesting still that our best current physical
theory, interpreted realistically, satisfies those constraints.
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