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Abstract

Importance sampling-based inference algorithms have
shown excellent performance on reasoning tasks in
Bayesian networks (Cheng & Druzdzel 2000; Moral &
Salmeron 2003; Yuan & Druzdzel 2005). In this paper,
we argue that all the improvements of these algorithms
come from the same source, the improvement on the
quality of the importance function. We also explain the
requirements that a good importance function should
satisfy, namely, it should concentrate its mass on the im-
portant parts of the target density and it should possess
heavy tails. While the first requirement is subject of a
theorem due to Rubinstein (1981), the second require-
ment is much less understood. We attempt to illustrate
why heavy tails are desirable by studying the properties
of importance sampling and examining a specific ex-
ample. The study also leads to a theoretical insight into
the desirability of heavy tails for importance sampling
in the context of Bayesian networks, which provides a
common theoretical basis for several successful heuris-
tic methods.

Introduction
Importance sampling is used in several areas of modern
statistics and econometrics to approximate unsolvable inte-
grals. It has become the basis for several successful Monte
Carlo sampling-based inference algorithms for Bayesian
networks (Cheng & Druzdzel 2000; Moral & Salmeron
2003; Yuan & Druzdzel 2005), for which inference is known
to be NP-hard (Cooper 1990; Dagum & Luby 1993). This
paper argues that all the improvements of these algorithms
come from the same source, the improvement on the qual-
ity of the importance function. A good importance func-
tion can lead importance sampling to yield excellent results
in a reasonable time. It is well understood that we should
focus on sampling in the areas where the value of the tar-
get function is relatively large (Rubinstein 1981). Thus, the
importance function should concentrate its mass on the im-
portant parts of the target density. However, unimportant
areas should by no means be neglected. Several authors
pointed out that a good importance function should pos-
sess heavy tails (Geweke 1989; MacKay 1998). In other
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words, we should increase the sampling density in those
unimportant areas. These two requirements seem to con-
tradict one another. Why heavy tails are important and how
heavy they should be are not well understood. This paper
addresses these questions by studying the properties of im-
portance sampling and discussing what conditions an ad-
missible importance function should satisfy. We also try
to illustrate why heavy tails are important by examining
an example in which the conditions can be verified analyti-
cally. When analytical verification is impossible, we recom-
mend to use two techniques to estimate how good an impor-
tance function is. The study also leads to a theoretical in-
sight into the desirability of heavy tails for importance sam-
pling in the context of Bayesian networks, which provides
a common theoretical basis for several successful heuristic
methods in Bayesian networks, including ε-cutoff (Cheng &
Druzdzel 2000; Ortiz & Kaelbling 2000; Yuan & Druzdzel
2005), if-tempering (Yuan & Druzdzel 2004), rejection con-
trol (Liu 2001), and dynamic tuning (Shachter & Peot 1989;
Ortiz & Kaelbling 2000; Moral & Salmeron 2003).

Importance Sampling
In our notation, a regular upper case letter, such as X , de-
notes a single variable, and x denotes its state. A bold upper
case letter, such as X, denotes a set of variables. Their states
are denoted by x. Now, let p(X) be a probability density of
n variables X = (X1, ..., Xn) over domain Ω ⊂ Rn. Con-
sider the problem of estimating the multiple integral

Ep(X)[g(X)] =

∫

Ω

g(X)p(X)dX , (1)

where g(X) is a function that is integrable with regard to
p(X) over domain Ω. Thus, Ep(X)[g(X)] exists. When
p(X) is a density that is easy to sample from, we can solve
the problem by, first, drawing a set of i.i.d. samples {xi}
from p(X) and, second, using these samples to approximate
the integral by means of the following expression

ĝN =
1

N

N
∑

i=1

g(xi) . (2)

By the strong law of large numbers, the tractable sum gn
almost surely converges as follows

ĝN → Ep(X)[g(X)] . (3)



In case that p(X) is a density that we do not know how to
sample from but we can only evaluate it at any point, we
need to resort to more sophisticated techniques. Importance
sampling is a technique that provides a systematic approach
that is practical for large dimensional problems. The main
idea is simple. First, note that we can rewrite Equation 1 as

Ep(X)[g(X)] =

∫

Ω

g(X)
p(X)

I(X)
I(X)dX (4)

with any probability distribution I(X), named importance
function, as long as I(X) > 0 when p(X) > 0. There-
fore, we can choose a density I(X) that is easy to sample
from. Let {xi} be a sequence of i.i.d. random samples that
is proportional to I(X). Again, by the strong law of large
numbers, we have

ĝN =

N
∑

i=1

[g(xi)w(xi)] → Ep(X)(g(X)) , (5)

where w(xi) = p(xi)
I(xi)

, under the following weak assump-
tions (Geweke 1989):

Assumption 1 p(X) is proportional to a proper probability
density function defined on Ω.

Assumption 2 {xi}
∞

i=1 is a sequence of i.i.d. random sam-
ples, the common distribution having a probability density
function I(X).

Assumption 3 The support of I(X) includes Ω.

Assumption 4 Ep(X)(g(X)) exists and is finite.

Obviously, importance sampling assigns more weight to
regions where p(X) > I(X) and less weight to regions
where p(X) < I(X) in order to estimate Ep(X)(g(X)) cor-
rectly.

We do not have much control over what is required in
Assumptions 1, 2, and 4, because they are either the inher-
ent properties of the problem at hand or the characteristic
of Monte Carlo simulation. We only have the freedom to
choose which importance function to use, as long as it sat-
isfies Assumption 3. The apparent reason why this assump-
tion is necessary is avoiding undefined weights in the areas
where I(X) = 0 while p(X) > 0. Since we draw samples
from I(X) when using Monte Carlo simulation, we bypass
the trouble. However, the consequences of the bypass ap-
pear in the final result. Let Ω = Ω1 ∪ Ω2 ∪ Ω3, where Ω1

is the common support of p(X) and I(X), Ω2 is the support
only of p(X), and Ω3 is the support only of I(X). When we
use the estimator in Equation 5, we have

ĝN =

N
∑

i=1

[g(xi)w(xi)]

=
∑

xi∈Ω1

[g(xi)w(xi)] +
∑

xi∈Ω2

[g(xi)w(xi)]

+
∑

xi∈Ω3

[g(xi)w(xi)] (6)

Since we draw samples from I(X), all samples are either
in Ω1 or Ω3, and no samples will drop in Ω2. Therefore,

the second term in Equation 6 is equal to 0. Also, all the
samples in Ω3 have zero weights, because p(X) is equal to
0. Therefore, the third term is also equal to 0. Finally, we
get

ĝN =
∑

xi∈Ω1

[g(xi)w(xi)]

→

∫

Ω1

g(X)p(X)dX , (7)

Figure 1: Using a truncated normal I(X) ∝
N(0, 2.12), |X| < 3 as the importance function to
integrate the density p(X) ∝ N(0, 22). The result
converges to 0.8664 instead of 1.0.

which is equal to the expectation of g(X) with regard to
p(X) only in the domain of Ω1. The conclusion is that the
result will inevitably converge to a wrong value if we violate
Assumption 3. Figure 1 shows an example of such erroneous
convergence.

Optimal Importance Function
Standing alone, the assumptions in the previous section are
of little practical value, because nothing can be said about
rates of convergence. Even though we do satisfy the as-
sumptions, ĝN can behave badly. Poor behavior is usually
manifested by values of w(xi) that exhibit substantial fluc-
tuations after thousands of replications (Geweke 1989). To
quantify the convergence rate, it is enough to calculate the
variance of the estimator in Equation 5, which is equal to

V arI(X)(g(X)w(X))

= EI(X)(g
2(X)w2(X)) − E2

I(X)(g(X)w(X))

= EI(X)(g
2(X)w2(X)) − E2

p(X)(g(X)) . (8)

We certainly would like to choose the optimal importance
function that minimizes the variance. The second term on
the right hand side does not depend on I(X) and, hence, we
only need to minimize the first term. This can be done using
Theorem 1.



Theorem 1 (Rubinstein 1981) The minimum of
V arI(X)(g(X)w(X)) is equal to

V arI(X)(g(X)w(X))

=

(
∫

Ω

|g(X)|p(X)dX

)2

−

(
∫

Ω

g(X)p(X)dX

)2

and occurs when we choose the importance function

I(X) =
|g(X)|p(X)

∫

Ω
|g(X)|p(X)dX

.

The optimal importance function turns out to be useless,
because it contains the integral

∫

Ω
|g(X)|p(X)dX, which is

practically equivalent to the quantity Ep(X)[g(X)] that we
are pursuing. Therefore, it cannot be used as a guidance for
choosing the importance function.

Why Heavy Tails?
The bottom line of choosing an importance function is that
the variance in Equation 8 should exist. Otherwise, the result
may oscillate rather than converge to the correct value. This
can be characterized by the Central Limit Theorem.

Theorem 2 (Geweke 1989) In addition to assumptions 1-4,
suppose

µ ≡ EI(X)[g(X)w(X)] =
∫

Ω
g(X)p(X)dX .

and

σ2 ≡ V arI(X)[g(X)w(X)] =
∫

Ω
[ g2(X)p2(X)

I(X) ]dX − 1 .

are finite. Then

n1/2(ĝN − µ) ⇒ N(0, σ2) .

The conditions of Theorem 2 should be verified analyti-
cally if the result is to be used to assess the accuracy of ĝN as
an approximation of Ep(X)[g(X)]. We use a normal integra-
tion problem as an example. Consider the problem of calcu-
lating the integral

∫

Ω
p(X)dX , where p(X) ∝ N(µp, σ

2
p),

using importance sampling. Let the importance function be
I(X) ∝ N(µI , σ

2
I ). We know that

µ ≡ EI(X)[w(X)] =
∫

Ω
p(X)dX = 1 , (9)

which is obviously finite. We can also calculate the vari-
ance as

V arI(X)(w(X))

=

∫

p2(X)

I(X)
dX −

(
∫

p(X)dX

)2

=
(σI

σp
)2

√

2(σI

σp
)2 − 1

exp(
(

µI−µp

σp
)2

2(σI

σp
)2 − 1

) − 1 . (10)

The necessary condition for the variance in Equation 10 to
exist is that 2(σI

σp
)2 − 1 > 0, which means that the variance

of the importance function should be greater than one half

of the variance of the target density. However, we not only
want this quantity to exist, but also want to minimize it. No-
tice that the quantity |

µI−µp

σp
| can be looked on as the stan-

dardized distance between µI and µp with regard to p(X).
From the table of the standard normal distribution function,
we know that

Φ(X) ∼= 1, when X ≥ 3.90 , (11)

where Φ(X) is the cumulative density function of the
standard normal distribution. Therefore, when |

µI−µp

σp
| ≥

3.90, I(X) must be far from close to p(X) in terms of their
shapes. For different values of |µI−µp

σp
|, we plot the variance

as a function of σI

σp
in Figure 2.

Figure 2: A plot of σI

σp
against the variance when using the

importance function I(X) ∝ N(µI , σ
2
I ) with different µIs

to integrate the density p(X) ∝ N(µp, σ
2
p). The legend

shows the values of |µI−µp

σp
|.

We can make several observations based on this figure.

Observation 1 Given the value of σI

σp
, as |µI−µp

σp
| increases,

the variance is monotonically increasing. This observation
is consistent with the well understood requirement that I(X)
should concentrate its mass on the important parts of p(X).
The more I(X) misses the important parts of p(X), the
worse the importance sampling performs.

Observation 2 As σI

σp
increases, the performances of I(X)

with different µIs differ less and less. Therefore, in case that
we do not know |

µI−µp

σp
|, which means we are not sure if

I(X) covers the important parts of p(X) or not,1 we may
want to make the tails of I(X) heavier in order to be safe.
The results may get worse, but not too much worse.

Observation 3 Given the value of µI and hence the value
of |

µI−µp

σp
|, we can always achieve a minimum variance

1We use the term cover to mean that the weight of one density
is comparable to that of another density in a certain area.



when σI

σp
takes some value, say u. As σI

σp
decreases from

u, the variance increases quickly and suddenly goes to infin-
ity. When σI

σp
increases from u, the variance also increases

but much slower.

Observation 4 The u value increases as |µI−µp

σp
| increases,

which means that the more I(X) misses the important parts
of p(X), the heavier the tails of I(X) should be.

The four observations all provide strong support for heavy
tails. In practice, we usually have no clue about the real
shape of p(X). Even if we have a way of estimating p(X),
our estimation will not be very precise. Therefore, we want
to avoid light tails and err on the heavy tail side in order
to be safe. One possible strategy is that we can start with an
importance function I(X) with considerably heavy tails and
refine the tails as we gain more and more knowledge about
p(X).

It can be shown that similar results hold for several other
distributions. Although to generalize from it is hard, we
can at least get some idea why in practice we often observe
that heavy tails are desirable. Furthermore, we will show
later that importance sampling for Bayesian networks has
the same results.

The conditions of Theorem 2 in general are not easy to
verify analytically. Geweke (1989) suggests that I(X) can
be chosen such that either

w(X) < w < ∞,∀X ∈ Ω;

and V arI(X)[g(X)w(X)] < ∞ ; (12)

or

Ω is compact, and

p(X) < p < ∞, I(X) > ε > 0,∀X ∈ Ω . (13)

Demonstration of Equation 13 is generally simple.
Demonstration of Equation 12 involves comparison of the
tail behaviors of p(X) and I(X). One way is to use the
variance of the normalized weights to measure how different
the importance function is from the target distribution (Liu
2001). If the target distribution p(X) is known only up to a
normalizing constant, which is the case in many real prob-
lems, the variance of the normalized weight can be estimated
by the coefficient of variation of the unnormalized weight:

cv2(w) =

m
∑

j=1

(w(xj) − w)2

(m − 1)w2 . (14)

where w is the sample average of all w(xj).
Another way is to use extreme value theory to study the

tail behavior. Smith (1987) shows that if we have an i.i.d.
population {w(xi)} then as a threshold value u > 0 in-
creases, the limit distribution of the random variables over
this threshold will be a generalized Pareto distribution with
parameter ξ. The important characteristic of this distribu-
tion is that only 1

ξ moments exist. Therefore, if we want its
variance to exist, ξ should be less than or equal to 1/2. We
can thus find the maximum likelihood estimator ξ̂ and form

a hypothesis testing problem for deciding between ξ ≤ 1/2
and ξ > 1/2 (Koopman & Shephard 2002). In practice, we
may not be satisfied with that ξ ≤ 1/2, but want ξ to be as
small as possible.

Importance Sampling for Bayesian Networks
Bayesian networks model explicitly probabilistic indepen-
dence relations among sets of variables. In general, in-
ference in Bayesian networks is NP-hard (Cooper 1990;
Dagum & Luby 1993). Therefore, people often resort
to approximate inference algorithms, such as importance
sampling-based algorithms. In this section, we show that the
same results as in the previous section hold for importance
sampling in Bayesian networks.

Property of the Joint Probability Distribution
Let X = {X1, X2, ..., Xn} be variables modelled in a
Bayesian network. Let p be the probability of a state of the
Bayesian network and pi be the conditional (or prior) prob-
ability of the selected outcome of variable Xi, we have

p = p1p2 . . . pn =

n
∏

i=1

pi . (15)

Druzdzel (1994) shows that p follows the lognormal dis-
tribution. Here, we review the main results. If we take the
logarithm of both sides of Equation 15, we obtain

ln p =

n
∑

i=1

ln pi . (16)

Since each pi is a random variable, ln pi is also a ran-
dom variable. By Central Limit Theorem (Liapounov), the
distribution of a sum of independent random variables ap-
proaches a normal distribution as the number of components
of the sum approaches infinity under the condition that the
sequence of variances is divergent. It can be easily shown
that any single variance takes the value 0 only if the condi-
tional distribution is uniform. However, in practical models,
uniform distributions are uncommon. The Liapounov con-
dition is obviously satisfied. Even though in practice we are
dealing with a finite number of variables, the theorem gives a
good approximation in such circumstances. The distribution
of the sum in Equation 16 has the following form

f(ln p) =
1

√

2π
∑n

i=1σ
2
i

exp
−(ln p −

∑n
i=1 µi)

2

2
∑n

i=1 σ2
i

. (17)

Although theoretically each probability in the joint proba-
bility distribution comes from a lognormal distribution with
perhaps different parameters, Druzdzel (1994) points out
that the conclusion is rather conservative and the distribu-
tions over probabilities of different states of a model might
approach the same lognormal distribution in most practical
models. The main reason is that conditional probabilities in
practical models tend to belong to modal ranges, at most a
few places after the decimal point, such as between 0.001
and 1.0. Translated into the decimal logarithmic scale, it
means the interval between −3 and 0, which is further av-
eraged over all probabilities, which have to add up to one,



and for variables with few outcomes will result in even more
modal ranges. Therefore, the parameters of the different log-
normal distributions may be quite close to one another.

Importance Sampling for Bayesian networks
From now on, we make the assumption that all probabilities
in the joint probability distribution of a Bayesian network
come from the same lognormal distribution. Therefore, we
can look at any importance sampling algorithm for Bayesian
networks as using one lognormal distribution as the impor-
tance function to compute the expectation of another log-
normal distribution. Let p(X) be the original density of a
Bayesian network and p(lnX) ∝ N(µp, σ

2
p). Let I(X) be

the importance function and I(lnX) ∝ N(µI , σ
2
I ). Again,

assume that we cannot sample from p(X) but we can only
evaluate it at any point. To compute the following multiple
integral

V =

∫

Ω

p(X)dX , (18)

we can use the following estimator

V̂N =

N
∑

i=1

w(xi) , (19)

where w(xi) = p(xi)
I(xi)

. The variance of this estimator is

V arI(X)(w(X)) = EI(X)(w(X)) − E2
I(X)(w(X)) . (20)

After plugging in the density functions of p(X) and I(X),
we obtain

V arI(X)(w(X)) =
(σI

σp
)2

√

2(σI

σp
)2 − 1

e

(
µI−µp

σp
)2

2(
σI
σp

)2−1
− 1 . (21)

which has exactly the same form as in Equation 10. There-
fore, we will have the same plots as in Figure 2 and the same
observations for importance sampling in Bayesian networks.
Therefore, we can conclude that heavy tails are also desir-
able for importance sampling in Bayesian networks.

Methods for Heavy Tails in Bayesian Networks
Given that heavy tails are desirable for importance sampling
in Bayesian networks, we recommend the following strat-
egy when designing an importance function. First, we need
to make sure that the support of the importance function in-
cludes that of the target distribution. Since Ω is compact and
p(X) is finite for Bayesian networks, which satisfy the con-
ditions of Equation 13, we only need to make sure that the
I(X) > 0 whenever p(X) > 0. Second, we can make use
of any estimation method to learn or compute an importance
function. Many importance sampling-based inference algo-
rithms using different methods to obtain importance func-
tions have been proposed for Bayesian networks. Based
on the methods, we classify the algorithms for Bayesian
networks into three families. The first family uses the
prior distribution of a Bayesian network as the importance
function, including the Probabilistic logic sampling (Hen-
rion 1988) and likelihood weighting (Fung & Chang 1989;

Shachter & Peot 1989) algorithms. The second family re-
sorts to learning methods to learn an importance function,
including the Self-importance sampling (SIS) (Shachter &
Peot 1989), adaptive importance sampling (Ortiz & Kael-
bling 2000), AIS-BN (Cheng & Druzdzel 2000), and dy-
namic importance sampling (Moral & Salmeron 2003) al-
gorithms. The third family directly computes an importance
function in the light of both the prior distribution and the
evidence, including the backward sampling (Fung & del
Favero 1994), IS (Hernandez, Moral, & Salmeron 1998),
annealed importance sampling (Neal 1998), and EPIS-BN
algorithms.

The last step, based on the discussion in the previous sec-
tion, is to get rid of light tails and make them heavier. There
are several ways of doing this:

ε-cutoff (Cheng & Druzdzel 2000; Ortiz & Kaelbling
2000; Yuan & Druzdzel 2005): ε-cutoff defines the tails in
Bayesian networks to be the states with extremely small or
extremely large probabilities. So, it sets a threshold ε and
replaces any smaller probability in the network by ε. At the
same time, it compensates for this change by subtracting it
from the largest probability in the same conditional proba-
bility distribution.

if-tempering (Yuan & Druzdzel 2004): Instead of just ad-
justing the importance function locally, if-tempering makes
the original importance function I(X) more flat by temper-
ing I(X). The final importance function becomes

I ′(X) ∝ I(X)1/T , (22)

where T (T > 1) is the tempering temperature.
Rejection control (Liu 2001): When the importance

function is not ideal, one often produces random samples
with very small weights when applying importance sam-
pling. Rejection control adjust the importance function
I(X) in the following way. Suppose we have drawn samples
x1,x2, ...,xN from I(X). Let wj = f(xj)/I(xj). Rejec-
tion control (RC) conducts the following operation for any
given threshold value c > 0:

1. For j = 1, ..., n, accept xj with probability

rj = min{1, wj/c} . (23)

2. If the jth sample xj is accepted, its weight is updated to
w∗j = qcwj/rj , where

qc =

∫

min{1, w(X)/c}I(X)dX . (24)

The new importance function I∗(X) resulting from this
adjustment is expected to be closer to the target function
f(X). In fact, it is easily seen that

I∗(X) = q−1
c min{I(X), f(X)/c} . (25)

Dynamic tuning (Shachter & Peot 1989; Ortiz & Kael-
bling 2000; Moral & Salmeron 2003): Dynamic tuning
looks on the calculation of importance function itself as a
self improving process. Starting from an initial importance
function, dynamic tuning draws some samples from the cur-
rent importance function and the use these samples to obtain



a new importance function by refining the old one. The new
importance function improves the old importance function
at each stage. After several iterations, the final importance
function is expected to be much closer to the optimal impor-
tance function.

Conclusion
The quality of importance function determines the perfor-
mance of importance sampling. In addition to the require-
ment that the importance function should concentrate its
mass on the important parts of the target density, it is also
highly recommended that the importance function possess
heavy tails. While the first requirement is subject of a the-
orem due to Rubinstein (1981), the second requirement is
much less understood, because it seems to contradict the first
requirement. By studying the assumptions and properties of
importance sampling, we know a good importance function
has to satisfy the conditions in Theorem 2. We examine a
specific example which shows clearly why heavy tails are
desirable for importance sampling. Although the example is
in a restricted form, we later show that importance sampling
for Bayesian networks has the same results. This insight
provides a common theoretical basis for several successful
heuristic methods.
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