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Abstract. Missing values of attributes in data sets, also referred to as incom-
plete data, pose difficulties in learning tasks, such as classification, data mining, or
learning Bayesian network structure and its numerical parameters. Because of the
predominance of incomplete data in practice, many methods have been proposed
to deal with them while there are few studies that compare their performance. The
HEPAR I project presents an excellent opportunity to test experimentally how these
methods perform on a real data set. We briefly review several popular methods for
handling incomplete data and then compare them on the task of learning condi-
tional probability distributions of a Bayesian network model, where the comparison
criterion is the resulting diagnostic accuracy. While substitution of “normal” values
of missing attributes seemed to perform best, we observed only a small difference
in performance among the studied methods.

1 Introduction

It is a fact of life that most practical databases of measurements or cases
contain missing values of some of their attributes. There are many reasons
for missing data. Sometimes they result from human errors of omission (e.g.,
a nurse forgetting to record the result of a measurement) sometimes the
value of the attribute in question was not known (e.g., a patient forgetting
whether or not she had chicken pox as a child). At other times, the value
might have not made sense (e.g., presence or absence of pregnancy in a male
patient). While the causes of missing values may be of interest in choosing
how to handle them, the fact that a measurement is missing is uniformly a
complication in any algorithm that analyzes the data.

Cowell et. al [3] define a database to be complete when all cases that it
contains are complete. In turn, a case is complete if every random variable
has a state or a value assigned to it. A database is incomplete, if it contains at
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least one incomplete case. A case is incomplete, if one or more of the random
variables has no value associated with it.

The data in an incomplete case can be missing, unobserved, or censored
at random, but there may also be some structure, known or unknown, in
why some values are missing. Little and Rubin [11,17] define three kinds of
possible mechanisms that account for missing data. The first account is re-
ferred to as the missing at random (MAR) property. One way to formulate
the MAR property is that while cases with incomplete data differ from cases
with complete data, the pattern of data missingness is predictable from other
variables in the database rather than being due to the specific variable on
which the data is missing. The second mechanism is related to a situation
when the data are missing completely at random (MCAR), i.e., when cases
with complete data are indistinguishable from cases with incomplete data.
The third type of missing data mechanism involves non-ignorable (NI) prop-
erty, i.e., when the pattern of data missingness is not random and it is not
predictable from other variables in the database. In case of medical data sets,
both the MAR and the MCAR assumptions seem invalid. There are typically
identifiable reasons why a measurement is missing.

Little and Rubin [11] offer an extensive review of various statistical ap-
proaches to handle missing data. The first group of methods involves listwise
or casewise data deletion, pairwise data deletion, mean substitution, or hot
deck imputation. There are also more sophisticated approaches involving re-
gression methods, Expectation Maximization (EM) approach, raw maximum
likelihood methods, or multiple imputation. All these methods require that
the data meet the MAR assumption. For cases with non-ignorable mecha-
nisms for missing data, a pattern-mixture model was developed [9,10,12].

Various approaches have been developed for learning parameters in prob-
abilistic systems from incomplete data. These techniques include iterative
methods like stochastic Gibbs Sampling [8], EM algorithm [5], and meth-
ods based on probability intervals, for example, deterministic method Bound
and Collapse [16], or methods presented in [1,4]. Most of these methods as-
sume usually the MAR property for all incomplete cases, however, Bound
and Collapse algorithm proved to be robust also for NI data.

There seems to be little in terms of comparative studies that would test
the proposed approaches in practical settings. Many approaches are typically
tested on artificial data (or artificially introduced missing values to real world
data, e.g., [16]). The HEPAR II project and its underlying HEPAR data set
have provided us with an opportunity to test various approaches to handle
missing data on a real data set. It has given us also a natural and fairly
objective criterion for such a comparison — the quality of the resulting model.
We test the diagnostic accuracy of the HEPAR II model for various methods
and present the results of experimental comparison.

The remainder of this paper is structured as follows. Section 2 describes
briefly the HEPAR data set and the HEPAR II model. Section 3 reviews several
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methods for handling incomplete data. Section 4 reports the results of an
experimental comparison of selected methods that we tested on the HEPAR
data set and the HEPAR II model. Finally, Section 5 discusses general issues
related to the performed study and directions for further work.

2 The HEPAR data set and the HEPAR II model

Our work on the HEPAR II system is a continuation of the HEPAR project
[2,18], conducted in the Institute of Biocybernetics and Biomedical Engineer-
ing of the Polish Academy of Sciences in collaboration with physicians at the
Medical Center of Postgraduate Education in Warsaw. The HEPAR system
was designed for gathering and processing of clinical data of patients with
liver disorders and aimed at reducing the need for hepatic biopsy by modern
computer-based diagnostic tools. An integral part of the HEPAR system is its
database, created in 1990 and thoroughly maintained since then at the Gas-
troentorogical Clinic of the Institute of Food and Feeding in Warsaw. The
current database contains over 800 patient records and its size is steadily
growing. Fach hepatological case is described by over 160 different medical
findings, such as patient self-reported data, results of physical examination,
laboratory tests, and finally a histopathologically verified diagnosis.

The version of the HEPAR data set, available to us, consisted of 699 patient
records. The HEPAR data set contains many missing values. While there may
be some randomly missing values that can be attributed to errors of omission,
these are not very likely, as the data set is well maintained and utmost care
is exercised in keeping it complete and correct. One of the main reasons
for missing values is sheer economics. There are more than 40 variables that
represent laboratory tests. It is obvious that not every patient will undergo all
the possible tests since not all of them are relevant to a particular diagnostic
situation. Also, performing a laboratory test is often expensive.

The HEPAR II project [13,14] aims at applying decision-theoretic tech-
niques to diagnosis of liver disorders. Its main component is a Bayesian net-
work model involving a subset of over 70 variables included in the HEPAR
database. The model covers 11 different liver diseases and 61 feature nodes
encoding medical findings such as patient self-reported data, signs, symptoms
and laboratory tests results. The structure of the model, (i.e., the nodes of
the graph along with arcs among them) was built based on medical literature
and conversations with our domain expert, a hepatologist Dr. Hanna Wasyluk
(third author of the current paper) and two American experts, a pathologist,
Dr. Daniel Schwartz, and a specialist in infectious diseases, Dr. John N. Dowl-
ing, from the University of Pittsburgh. The elicitation of the structure took
approximately 50 hours of interviews with the experts, of which roughly 40
hours were spent with Dr. Wasyluk and roughly 10 hours spent with Drs.
Schwartz and Dowling. This includes model refinement sessions, where pre-
viously elicited structure was reevaluated in a group setting. The numerical
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parameters of the model, i.e., the prior and conditional probability distribu-
tions, were learned from the HEPAR database. All continuous variables in the
database were discretized by our expert.

Missing values in the HEPAR database have been a major problem in our
work on the HEPAR II project. We counted that there were 7,792 missing
values (15.9% of all entries!) in the learning data set. Figure 1 presents the
cumulative distribution of the number of cases in the HEPAR data set as a
function of the number of missing values per patient case. For example, there
were 200 records in the HEPAR data set where each case had at most nine
missing values. Please, note that there were no records that are complete.
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Fig. 1. Number of cases as a function of the number of missing values per case

We have tried several approaches to handle incomplete data when learning
conditional probability distribution of the HEPAR II model, the choice of
which was based on conversations with our expert and understanding that
resulted from these.

3 Methods for handling missing data

The following section describes briefly several simple approaches to handling
missing values in databases. We applied some of these methods in the course
of the HEPAR II project.

3.1 Discarding records with missing data

The simplest way of dealing with missing data involves listwise or casewise
data deletion approach. The method simply omits entire records if they have
missing values for any of the variables. In those cases where only a small
fraction of records contain missing values, this is a simple method that works
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well. An underlying assumption in this approach is that the values are missing
at random and, thus, discarding records with missing data will not bias the
remaining data set. When many records contain missing values, this method
becomes unreliable. For example, in the HEPAR data set, no single record
contained all values. Application of this method would thus result in an empty
data set.

3.2 Missing as an additional state

A simple approach to handling incomplete data is treating a missing value of
an attribute as an additional state of the attribute, i.e., the missing measure-
ments are interpreted as possible values of the variables in question. This in-
terpretation requires some care when using the system. It is assumed namely
that the fact that a measurement was not taken is meaningful — for ex-
ample, in case of a medical database, the physician did not find taking the
measurement appropriate. The meaning of the thus construed outcome un-
measured can be in this way equivalent to a measured value of the variable.
This approach does not assume that data are missing at random.

3.3 Replacement by “normal” values

The third approach for handling missing values is based on the suggestions
of Peot and Shachter [15] on the interpretation of missing values in medical
data sets. They argued convincingly that data in medical data sets is not
missing at random and that there are two important factors influencing the
probability of reporting a finding. The first factor is a preference for reporting
present symptoms over absent symptoms. The second factor is a preference
for reporting more severe symptoms before those that are less severe. In other
words, if a symptom is absent, there is a high chance that it is not reported,
i.e., it is missing from the patient record. And conversely, a missing value
suggests that the symptom was absent. Then, in learning the model param-
eters, missing values for discrete variables are assigned to state absent (e.g.,
a missing value for Jaundice is interpreted as absent). In case of continuous
variables, a missing value is assigned as a typical value for a healthy patient
elicited from the expert (e.g., a missing value for Bilirubin is interpreted as
being in the range of 0—1 mg/dl). Similarly to the previous approach, this
method assumes that the pattern of data missingness is not random.

3.4 Replacement by mean values

Replacement by mean values approach relates to filling in missing data values
with a variable’s mean that is computed from available cases. In case of
discrete binary variables, a missing value is substituted by the outcome that
occurs most frequently in the data.
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3.5 Hot deck imputation

Hot deck imputation approach [6] examines the cases with complete records
and identifies the most similar case to the case with a missing value. Then, it
substitutes a missing value with the most similar case’s variable value. More
sophisticated hot deck algorithms identify more than one similar record and
then randomly select one of those available donor records to impute the
missing value or use an average value if that were appropriate.

3.6 K-NN techniques

The distance weighted k-Nearest Neighbor techniques (k-NN) [7] are widely
used in many practical research problems. The k-NN techniques involve search-
ing for k nearest neighbors of a given data point, i.e., in case of a medical data
set, it would consist in looking for neighboring patient cases. One practical
issue in applying k-NN approach is that the distance between instances is
calculated based on all attributes of the instance. The k-NN approach can be
also used in the imputation of incomplete data, where it involves imputation
of missing values based on the neighboring patient records.

4 Experimental comparison of the approaches

Our experiments involved learning conditional probability distributions of
the HEPAR II model from the HEPAR data set. We compared the diagnostic
accuracy of HEPAR II for each of the methods dealing with missing data.
In each case, the model had the same graphical structure elicited from the
experts. In other words, the various approaches to deal with missing data
had impact only on the numerical parameters of the model and not on its
structure. The diagnostic accuracy was defined as the percentage of correct
diagnoses and was determined by cross-validation using the leave-one-out
method. When testing the diagnostic accuracy of HEPAR II, we were inter-
ested in both (1) whether the most probable diagnosis indicated by the model
is indeed the correct diagnosis, and (2) whether the set of w most probable
diagnoses contains the correct diagnosis for small values of w (we chose a
“window” of w=1, 2, 3, and 4). The latter focus is of interest in diagnostic
settings, where a decision support system only suggest possible diagnoses to
a physician. The physician, who is the ultimate decision maker, may want to
see several alternative diagnoses before focusing on one.

In our comparison we have taken into account the methods described in
Sections 3.2 through 3.6. We could not include approaches that are based on
discarding records with missing data (Section 3.1) because there was not even
one complete record in our data set (see Figure 1). In case of the replacement
be mean values approach, we noticed that most of mean values that were
calculated for the variables representing laboratory tests were significantly
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higher/lower than normal values. For example, a mean value for AST was
equal to 111U/L' while the normal value for this finding is between 5 and
35U/L. When analyzing the HEPAR data set, we found that there were only
three binary variables, for which “present” value was the most frequent oc-
curring value. In case of the hot deck imputation approach, we defined the
most similar case as a case that has the highest number of similar or equal
values for corresponding variables. We also employed the k-nearest neighbor
method for k = 1, 5. We chose the Euclidean distance as a metric. For k =1,
we substituted missing values with the values of the nearest neighbor, in case
of the five nearest neighbors, we have calculated mean values based on the
neighboring cases and replaced with them missing values. Because the results
were similar for both values of k, we present the results only for k£ = 5.

In addition, we have included the following three methods that played the
function of the baseline, i.e., we expected that they would perform poorly.

Replacement by “abnormal” values

This method is the opposite of replacement by “normal” values described
in Section 3.3 and involves replacing missing values with values that are
considered “abnormal.” Missing values for discrete variables are replaced by
“present” value and for continuous variables are replaced by the values indi-
cating most abnormal result (elicited from the expert).

Proportional random replacement

In this method we replaced missing values by a random drawing from the
set of possible states of the variable. The probability of drawing a state was
proportional to the probability of that state.

Replacement at random

In this method, we replaced missing values by a random drawing from the
set of possible states of the variable. The probability of drawing a state was
uniform, i.e., each state was equally likely to be drawn.

Table 1 captures the results of the diagnostic accuracy of HEPAR II for
different approaches to handle missing values. The methods marked by an
asterisk are also presented graphically in Figure 2.

5 Discussion

We tested the diagnostic accuracy of HEPAR II for several methods dealing
with incomplete data. In each case, the model had the same graphical struc-
ture elicited from the experts. The accuracy for most of the methods that

! An abbreviation U/L stands for units/liter.
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Table 1. The diagnostic accuracy of HEPAR II for different approaches to handle
incomplete data for window size equal w = 1,2, 3,4

||Appr0ach |w:1|w:2|w:3|w:4||
Replacement by “normal” values* |0.57|0.69|0.75|0.79
Missing as an additional state* 0.54 | 0.67 | 0.75 | 0.82
Replacement by mean values™* 0.49(0.63|0.72|0.77
Hot deck imputation 0.51]0.64|0.72|0.77
k-NN 0.51]0.63|0.71]0.77

Replacement by “abnormal” values*| 0.51 | 0.65 | 0.72 | 0.78
Proportional random replacement 0.5210.66 | 0.74 | 0.79
Replacement at random* 0.4910.64 |0.72 | 0.78
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Fig. 2. The diagnostic accuracy of HEPAR II as a function of the window size for
selected approaches to handling missing data.

we have tested was similar, with replacement by “normal” values and miss-
ing as an additional state performing slightly better than other approaches.
It is interesting that while there are some performance differences between
the methods, they are minimal. Even though the data set contained many
incomplete values and one would expect even small performance differences
to be amplified, this did not happen. It will be interesting to probe this issue
further by performing tests on another real medical data set.

Our expert was able to predict a-priori which method would perform best
on the data or, in other words, which of the assumptions was the most reason-
able, even though the performance difference turned out to be minimal. Our
advice to those knowledge engineers who encounter data sets with missing
values is to reflect on the data and find out what the reasons are for missing
values. In case of medical data sets, the assumption postulated by Peot and
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Shachter [15] seems very reasonable. Even in this case, however, we advise to
run it through the expert.
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