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t. Missing values of attributes in data sets, also referred to as in
om-plete data, pose diÆ
ulties in learning tasks, su
h as 
lassi�
ation, data mining, orlearning Bayesian network stru
ture and its numeri
al parameters. Be
ause of thepredominan
e of in
omplete data in pra
ti
e, many methods have been proposedto deal with them while there are few studies that 
ompare their performan
e. TheHepar II proje
t presents an ex
ellent opportunity to test experimentally how thesemethods perform on a real data set. We brie
y review several popular methods forhandling in
omplete data and then 
ompare them on the task of learning 
ondi-tional probability distributions of a Bayesian network model, where the 
omparison
riterion is the resulting diagnosti
 a

ura
y. While substitution of \normal" valuesof missing attributes seemed to perform best, we observed only a small di�eren
ein performan
e among the studied methods.1 Introdu
tionIt is a fa
t of life that most pra
ti
al databases of measurements or 
ases
ontain missing values of some of their attributes. There are many reasonsfor missing data. Sometimes they result from human errors of omission (e.g.,a nurse forgetting to re
ord the result of a measurement) sometimes thevalue of the attribute in question was not known (e.g., a patient forgettingwhether or not she had 
hi
ken pox as a 
hild). At other times, the valuemight have not made sense (e.g., presen
e or absen
e of pregnan
y in a malepatient). While the 
auses of missing values may be of interest in 
hoosinghow to handle them, the fa
t that a measurement is missing is uniformly a
ompli
ation in any algorithm that analyzes the data.Cowell et. al [3℄ de�ne a database to be 
omplete when all 
ases that it
ontains are 
omplete. In turn, a 
ase is 
omplete if every random variablehas a state or a value assigned to it. A database is in
omplete, if it 
ontains at



2 Oni�sko, Druzdzel and Wasylukleast one in
omplete 
ase. A 
ase is in
omplete, if one or more of the randomvariables has no value asso
iated with it.The data in an in
omplete 
ase 
an be missing, unobserved, or 
ensoredat random, but there may also be some stru
ture, known or unknown, inwhy some values are missing. Little and Rubin [11,17℄ de�ne three kinds ofpossible me
hanisms that a

ount for missing data. The �rst a

ount is re-ferred to as the missing at random (MAR) property. One way to formulatethe MAR property is that while 
ases with in
omplete data di�er from 
aseswith 
omplete data, the pattern of data missingness is predi
table from othervariables in the database rather than being due to the spe
i�
 variable onwhi
h the data is missing. The se
ond me
hanism is related to a situationwhen the data are missing 
ompletely at random (MCAR), i.e., when 
aseswith 
omplete data are indistinguishable from 
ases with in
omplete data.The third type of missing data me
hanism involves non-ignorable (NI) prop-erty, i.e., when the pattern of data missingness is not random and it is notpredi
table from other variables in the database. In 
ase of medi
al data sets,both the MAR and the MCAR assumptions seem invalid. There are typi
allyidenti�able reasons why a measurement is missing.Little and Rubin [11℄ o�er an extensive review of various statisti
al ap-proa
hes to handle missing data. The �rst group of methods involves listwiseor 
asewise data deletion, pairwise data deletion, mean substitution, or hotde
k imputation. There are also more sophisti
ated approa
hes involving re-gression methods, Expe
tation Maximization (EM) approa
h, raw maximumlikelihood methods, or multiple imputation. All these methods require thatthe data meet the MAR assumption. For 
ases with non-ignorable me
ha-nisms for missing data, a pattern-mixture model was developed [9,10,12℄.Various approa
hes have been developed for learning parameters in prob-abilisti
 systems from in
omplete data. These te
hniques in
lude iterativemethods like sto
hasti
 Gibbs Sampling [8℄, EM algorithm [5℄, and meth-ods based on probability intervals, for example, deterministi
 method Boundand Collapse [16℄, or methods presented in [1,4℄. Most of these methods as-sume usually the MAR property for all in
omplete 
ases, however, Boundand Collapse algorithm proved to be robust also for NI data.There seems to be little in terms of 
omparative studies that would testthe proposed approa
hes in pra
ti
al settings. Many approa
hes are typi
allytested on arti�
ial data (or arti�
ially introdu
ed missing values to real worlddata, e.g., [16℄). The Hepar II proje
t and its underlying Hepar data sethave provided us with an opportunity to test various approa
hes to handlemissing data on a real data set. It has given us also a natural and fairlyobje
tive 
riterion for su
h a 
omparison| the quality of the resulting model.We test the diagnosti
 a

ura
y of the Hepar II model for various methodsand present the results of experimental 
omparison.The remainder of this paper is stru
tured as follows. Se
tion 2 des
ribesbrie
y the Hepar data set and the Hepar IImodel. Se
tion 3 reviews several



Methods for handling in
omplete data 3methods for handling in
omplete data. Se
tion 4 reports the results of anexperimental 
omparison of sele
ted methods that we tested on the Hepardata set and the Hepar II model. Finally, Se
tion 5 dis
usses general issuesrelated to the performed study and dire
tions for further work.2 The Hepar data set and the Hepar II modelOur work on the Hepar II system is a 
ontinuation of the Hepar proje
t[2,18℄, 
ondu
ted in the Institute of Bio
yberneti
s and Biomedi
al Engineer-ing of the Polish A
ademy of S
ien
es in 
ollaboration with physi
ians at theMedi
al Center of Postgraduate Edu
ation in Warsaw. The Hepar systemwas designed for gathering and pro
essing of 
lini
al data of patients withliver disorders and aimed at redu
ing the need for hepati
 biopsy by modern
omputer-based diagnosti
 tools. An integral part of the Hepar system is itsdatabase, 
reated in 1990 and thoroughly maintained sin
e then at the Gas-troentorogi
al Clini
 of the Institute of Food and Feeding in Warsaw. The
urrent database 
ontains over 800 patient re
ords and its size is steadilygrowing. Ea
h hepatologi
al 
ase is des
ribed by over 160 di�erent medi
al�ndings, su
h as patient self-reported data, results of physi
al examination,laboratory tests, and �nally a histopathologi
ally veri�ed diagnosis.The version of theHepar data set, available to us, 
onsisted of 699 patientre
ords. The Hepar data set 
ontains many missing values. While there maybe some randomly missing values that 
an be attributed to errors of omission,these are not very likely, as the data set is well maintained and utmost 
areis exer
ised in keeping it 
omplete and 
orre
t. One of the main reasonsfor missing values is sheer e
onomi
s. There are more than 40 variables thatrepresent laboratory tests. It is obvious that not every patient will undergo allthe possible tests sin
e not all of them are relevant to a parti
ular diagnosti
situation. Also, performing a laboratory test is often expensive.The Hepar II proje
t [13,14℄ aims at applying de
ision-theoreti
 te
h-niques to diagnosis of liver disorders. Its main 
omponent is a Bayesian net-work model involving a subset of over 70 variables in
luded in the Hepardatabase. The model 
overs 11 di�erent liver diseases and 61 feature nodesen
oding medi
al �ndings su
h as patient self-reported data, signs, symptomsand laboratory tests results. The stru
ture of the model, (i.e., the nodes ofthe graph along with ar
s among them) was built based on medi
al literatureand 
onversations with our domain expert, a hepatologist Dr. HannaWasyluk(third author of the 
urrent paper) and two Ameri
an experts, a pathologist,Dr. Daniel S
hwartz, and a spe
ialist in infe
tious diseases, Dr. John N. Dowl-ing, from the University of Pittsburgh. The eli
itation of the stru
ture tookapproximately 50 hours of interviews with the experts, of whi
h roughly 40hours were spent with Dr. Wasyluk and roughly 10 hours spent with Drs.S
hwartz and Dowling. This in
ludes model re�nement sessions, where pre-viously eli
ited stru
ture was reevaluated in a group setting. The numeri
al



4 Oni�sko, Druzdzel and Wasylukparameters of the model, i.e., the prior and 
onditional probability distribu-tions, were learned from the Hepar database. All 
ontinuous variables in thedatabase were dis
retized by our expert.Missing values in the Hepar database have been a major problem in ourwork on the Hepar II proje
t. We 
ounted that there were 7,792 missingvalues (15.9% of all entries!) in the learning data set. Figure 1 presents the
umulative distribution of the number of 
ases in the Hepar data set as afun
tion of the number of missing values per patient 
ase. For example, therewere 200 re
ords in the Hepar data set where ea
h 
ase had at most ninemissing values. Please, note that there were no re
ords that are 
omplete.

Fig. 1. Number of 
ases as a fun
tion of the number of missing values per 
aseWe have tried several approa
hes to handle in
omplete data when learning
onditional probability distribution of the Hepar II model, the 
hoi
e ofwhi
h was based on 
onversations with our expert and understanding thatresulted from these.3 Methods for handling missing dataThe following se
tion des
ribes brie
y several simple approa
hes to handlingmissing values in databases. We applied some of these methods in the 
ourseof the Hepar II proje
t.3.1 Dis
arding re
ords with missing dataThe simplest way of dealing with missing data involves listwise or 
asewisedata deletion approa
h. The method simply omits entire re
ords if they havemissing values for any of the variables. In those 
ases where only a smallfra
tion of re
ords 
ontain missing values, this is a simple method that works



Methods for handling in
omplete data 5well. An underlying assumption in this approa
h is that the values are missingat random and, thus, dis
arding re
ords with missing data will not bias theremaining data set. When many re
ords 
ontain missing values, this methodbe
omes unreliable. For example, in the Hepar data set, no single re
ord
ontained all values. Appli
ation of this method would thus result in an emptydata set.3.2 Missing as an additional stateA simple approa
h to handling in
omplete data is treating a missing value ofan attribute as an additional state of the attribute, i.e., the missing measure-ments are interpreted as possible values of the variables in question. This in-terpretation requires some 
are when using the system. It is assumed namelythat the fa
t that a measurement was not taken is meaningful | for ex-ample, in 
ase of a medi
al database, the physi
ian did not �nd taking themeasurement appropriate. The meaning of the thus 
onstrued out
ome un-measured 
an be in this way equivalent to a measured value of the variable.This approa
h does not assume that data are missing at random.3.3 Repla
ement by \normal" valuesThe third approa
h for handling missing values is based on the suggestionsof Peot and Sha
hter [15℄ on the interpretation of missing values in medi
aldata sets. They argued 
onvin
ingly that data in medi
al data sets is notmissing at random and that there are two important fa
tors in
uen
ing theprobability of reporting a �nding. The �rst fa
tor is a preferen
e for reportingpresent symptoms over absent symptoms. The se
ond fa
tor is a preferen
efor reporting more severe symptoms before those that are less severe. In otherwords, if a symptom is absent, there is a high 
han
e that it is not reported,i.e., it is missing from the patient re
ord. And 
onversely, a missing valuesuggests that the symptom was absent. Then, in learning the model param-eters, missing values for dis
rete variables are assigned to state absent (e.g.,a missing value for Jaundi
e is interpreted as absent). In 
ase of 
ontinuousvariables, a missing value is assigned as a typi
al value for a healthy patienteli
ited from the expert (e.g., a missing value for Bilirubin is interpreted asbeing in the range of 0{1 mg/dl). Similarly to the previous approa
h, thismethod assumes that the pattern of data missingness is not random.3.4 Repla
ement by mean valuesRepla
ement by mean values approa
h relates to �lling in missing data valueswith a variable's mean that is 
omputed from available 
ases. In 
ase ofdis
rete binary variables, a missing value is substituted by the out
ome thato

urs most frequently in the data.



6 Oni�sko, Druzdzel and Wasyluk3.5 Hot de
k imputationHot de
k imputation approa
h [6℄ examines the 
ases with 
omplete re
ordsand identi�es the most similar 
ase to the 
ase with a missing value. Then, itsubstitutes a missing value with the most similar 
ase's variable value. Moresophisti
ated hot de
k algorithms identify more than one similar re
ord andthen randomly sele
t one of those available donor re
ords to impute themissing value or use an average value if that were appropriate.3.6 K-NN te
hniquesThe distan
e weighted k-Nearest Neighbor te
hniques (k-NN) [7℄ are widelyused in many pra
ti
al resear
h problems. The k-NN te
hniques involve sear
h-ing for k nearest neighbors of a given data point, i.e., in 
ase of a medi
al dataset, it would 
onsist in looking for neighboring patient 
ases. One pra
ti
alissue in applying k-NN approa
h is that the distan
e between instan
es is
al
ulated based on all attributes of the instan
e. The k-NN approa
h 
an bealso used in the imputation of in
omplete data, where it involves imputationof missing values based on the neighboring patient re
ords.4 Experimental 
omparison of the approa
hesOur experiments involved learning 
onditional probability distributions ofthe Hepar II model from the Hepar data set. We 
ompared the diagnosti
a

ura
y of Hepar II for ea
h of the methods dealing with missing data.In ea
h 
ase, the model had the same graphi
al stru
ture eli
ited from theexperts. In other words, the various approa
hes to deal with missing datahad impa
t only on the numeri
al parameters of the model and not on itsstru
ture. The diagnosti
 a

ura
y was de�ned as the per
entage of 
orre
tdiagnoses and was determined by 
ross-validation using the leave-one-outmethod. When testing the diagnosti
 a

ura
y of Hepar II, we were inter-ested in both (1) whether the most probable diagnosis indi
ated by the modelis indeed the 
orre
t diagnosis, and (2) whether the set of w most probablediagnoses 
ontains the 
orre
t diagnosis for small values of w (we 
hose a\window" of w=1, 2, 3, and 4). The latter fo
us is of interest in diagnosti
settings, where a de
ision support system only suggest possible diagnoses toa physi
ian. The physi
ian, who is the ultimate de
ision maker, may want tosee several alternative diagnoses before fo
using on one.In our 
omparison we have taken into a

ount the methods des
ribed inSe
tions 3.2 through 3.6. We 
ould not in
lude approa
hes that are based ondis
arding re
ords with missing data (Se
tion 3.1) be
ause there was not evenone 
omplete re
ord in our data set (see Figure 1). In 
ase of the repla
ementbe mean values approa
h, we noti
ed that most of mean values that were
al
ulated for the variables representing laboratory tests were signi�
antly



Methods for handling in
omplete data 7higher/lower than normal values. For example, a mean value for AST wasequal to 111U=L1 while the normal value for this �nding is between 5 and35U=L. When analyzing the Hepar data set, we found that there were onlythree binary variables, for whi
h \present" value was the most frequent o
-
urring value. In 
ase of the hot de
k imputation approa
h, we de�ned themost similar 
ase as a 
ase that has the highest number of similar or equalvalues for 
orresponding variables. We also employed the k-nearest neighbormethod for k = 1; 5. We 
hose the Eu
lidean distan
e as a metri
. For k = 1,we substituted missing values with the values of the nearest neighbor, in 
aseof the �ve nearest neighbors, we have 
al
ulated mean values based on theneighboring 
ases and repla
ed with them missing values. Be
ause the resultswere similar for both values of k, we present the results only for k = 5.In addition, we have in
luded the following three methods that played thefun
tion of the baseline, i.e., we expe
ted that they would perform poorly.Repla
ement by \abnormal" valuesThis method is the opposite of repla
ement by \normal" values des
ribedin Se
tion 3.3 and involves repla
ing missing values with values that are
onsidered \abnormal." Missing values for dis
rete variables are repla
ed by\present" value and for 
ontinuous variables are repla
ed by the values indi-
ating most abnormal result (eli
ited from the expert).Proportional random repla
ementIn this method we repla
ed missing values by a random drawing from theset of possible states of the variable. The probability of drawing a state wasproportional to the probability of that state.Repla
ement at randomIn this method, we repla
ed missing values by a random drawing from theset of possible states of the variable. The probability of drawing a state wasuniform, i.e., ea
h state was equally likely to be drawn.Table 1 
aptures the results of the diagnosti
 a

ura
y of Hepar II fordi�erent approa
hes to handle missing values. The methods marked by anasterisk are also presented graphi
ally in Figure 2.5 Dis
ussionWe tested the diagnosti
 a

ura
y of Hepar II for several methods dealingwith in
omplete data. In ea
h 
ase, the model had the same graphi
al stru
-ture eli
ited from the experts. The a

ura
y for most of the methods that1 An abbreviation U/L stands for units/liter.



8 Oni�sko, Druzdzel and WasylukTable 1. The diagnosti
 a

ura
y of Hepar II for di�erent approa
hes to handlein
omplete data for window size equal w = 1; 2; 3; 4Approa
h w=1 w=2 w=3 w=4Repla
ement by \normal" values* 0.57 0.69 0.75 0.79Missing as an additional state* 0.54 0.67 0.75 0.82Repla
ement by mean values* 0.49 0.63 0.72 0.77Hot de
k imputation 0.51 0.64 0.72 0.77k-NN 0.51 0.63 0.71 0.77Repla
ement by \abnormal" values* 0.51 0.65 0.72 0.78Proportional random repla
ement 0.52 0.66 0.74 0.79Repla
ement at random* 0.49 0.64 0.72 0.78

Fig. 2. The diagnosti
 a

ura
y of Hepar II as a fun
tion of the window size forsele
ted approa
hes to handling missing data.we have tested was similar, with repla
ement by \normal" values and miss-ing as an additional state performing slightly better than other approa
hes.It is interesting that while there are some performan
e di�eren
es betweenthe methods, they are minimal. Even though the data set 
ontained manyin
omplete values and one would expe
t even small performan
e di�eren
esto be ampli�ed, this did not happen. It will be interesting to probe this issuefurther by performing tests on another real medi
al data set.Our expert was able to predi
t a-priori whi
h method would perform beston the data or, in other words, whi
h of the assumptions was the most reason-able, even though the performan
e di�eren
e turned out to be minimal. Ouradvi
e to those knowledge engineers who en
ounter data sets with missingvalues is to re
e
t on the data and �nd out what the reasons are for missingvalues. In 
ase of medi
al data sets, the assumption postulated by Peot and
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omplete data 9Sha
hter [15℄ seems very reasonable. Even in this 
ase, however, we advise torun it through the expert.A
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