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Most artificial intelligence applications, especially
expert systems, have to reason and make decisions
based on uncertain data and uncertain models. For
this reason, several methods have been proposed
for reasoning with different kinds of uncertainty.

INTRODUCTION

We often have to make decisions based on uncer-
tain knowledge, not only in our private lives
(which job to take, which house to buy, where to
invest our money) but also in professional activ-
ities, such as medicine, economics, politics, engin-
eering, and education. Therefore, any reasoning
method that tries to replicate human reasoning
must be able to draw conclusions from uncertain
models and uncertain data. Models may be uncer-
tain because of indeterminism in the real world or
because of our lack of knowledge. Furthermore,
data may be incomplete (pieces of information
may be not available in a diagnostic case), ambigu-
ous (a pronoun in a sentence may refer to different
subjects), erroneous (patients may lie to their
doctors, or sensors may be faulty), or imprecise
(because of the limited precision of measuring
devices, subjective estimations, or natural lan-

guage).

This article reviews some of the uncertain
reasoning methods that have been proposed in
the field of artificial intelligence.

NAIVE BAYES

The oldest method applied in uncertain reasoning
is probability theory. Probabilistic reasoning
concentrates basically on computing the posterior
probability of the variables of interest given the
available evidence. In medicine, for example, the
evidence consists of symptoms, signs, clinical his-
tory, and laboratory tests. A diagnostician may be
interested in the probability that a patient suffers
from a certain disease. In mineral prospecting, we
may wish to know the posterior probability of the
presence of a certain deposit given a set of geo-
logical findings. In computer vision, we might be
interested in the probability that a certain object is
present in an image given observation of certain
shapes or shadows.

The probability of the diagnoses given the avail-
able evidence can be computed by the general-
ization of Bayes’ theorem to several variables.
However, the direct application of this method
would need a prohibitive number of parameters
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(probabilities), which grows exponentially with the
number of variables involved. Two assumptions
were introduced to simplify the model. The first
assumption is that the diagnoses are mutually ex-
clusive; i.e. each patient can suffer from at most one
disease and each device can have at most one fail-
ure at a time. It is then possible to consider a vari-
able D taking n values, as many as the number of
possible diagnoses. The second assumption is that
the findings are conditionally independent given
each diagnosis d;, so:

P(fi, o fm|di) = P(fi|di) - ... - P(fuldi),

1<i<n (1)

where f, represents one of the possible values of a
finding Fy. Under these assumptions, the posterior
probability of d; can be computed as follows:

__P(d)-P(fildi) - ... - P(fudi)
2 P(d;) - P(fildj) - .. P(fuld))
]

(2)

In this simplified model, the number of parameters
is proportional to the number of variables: it re-
quires n prior probabilities P(d;) plus, in the case
of m dichotomous findings, n x m conditional prob-
abilities P(fx | d).

Although this method was used in the construc-
tion of diagnostic medical systems in the 1960s, it
was severely criticized because its assumptions are
usually unrealistic (Szolovits and Pauker, 1978). In
fact, the assumption of exclusive diagnoses is a
reasonable approximation only when the probabil-
ity of the simultaneous presence of two diseases or
two failures is very low. In medicine, however, it is
common for a patient to suffer from multiple dis-
orders. Also, the assumption of conditional inde-
pendence is unrealistic when there are causal
associations among findings other than those due
to the diagnoses included in the model. Because of
the crudeness of such assumptions, this method is
often called ‘naive Bayes’ or ‘idiot Bayes’. Even
under these assumptions, the model still requires
a large number of parameters, which may be diffi-
cult to obtain.

P(di|fi, - fm)

MYCIN’S CERTAINTY FACTORS

MYCIN was a rule-based expert system developed
in the 1970s as a decision support tool for antibac-
terial therapy (Buchanan and Shortliffe, 1984). To
accommodate uncertainty, MYCIN associated a
certainty factor with each rule and, consequently,
with each proposition.

The certainty factor of each rule ‘if E then H’,
CF(H, E), is a measure of the degree to which evi-
dence E confirms hypothesis H. When E increas-
es the probability of H, so that P(H|E) > P(H), then
0 < CF(H,E) < 1. The higher the increase in prob-
ability, the higher the certainty factor. When
E contributes evidence against H, so that
P(H|E) < P(H), then —1 < CF(H,E) < 0. The value
of each certainty factor in MYCIN’s rules was
obtained from human experts when formulating
the rules.

Analogously, MYCIN assigned a certainty factor
to each assertion. The result was a set of quadru-
plets of the form illustrated in Table 1. Thus we
know with absolute certainty that the patient’s
name is John Smith; there is strong evidence indi-
cating that the form of organism-1 is rod, weak
evidence that it is staphylococcus, weak evidence
that it is not a streptococcus, and absolute certainty
that the form of organism-2 is not rod.

When the user introduces a piece of evidence,
such as A=‘the form of organism-1 is rod’,
MYCIN states that CF(A) =1. Given the rule
‘if A then B’ with certainty factor CF(B,A), the
certainty factor for B can be computed as
CF(B) = CF(A) - CF(B, A). If there is a second rule
‘if B then C’, then CF(C) = CF(B) - CF(C,B). This
value CF(C) might, in turn, be used in the applica-
tion of a third rule ‘if C then D’, and so on.

There was also an equation for combining con-
vergent rules, such as ‘if E; then H” and ‘if E, then
H’, which support the same hypothesis H. The
certainty factor of a composed antecedent, such as
‘if A and not B’, was computed by applying these
equations:

CF(not E) = 1 — CF(E) (3)
CF(E; and E,) = min(CF(E;), CF(E)) (4)
CF(E; or E;) = max(CF(E;), CF(Ey)) (5)

Although the performance of MYCIN was com-
parable to that of human experts in the field of
infectious diseases, the certainty factor model was

Table 1. Certainty factors of assertions as represented in
MYCIN

Object Attribute Value CF

patient name John Smith 1.0
organism-1 morphology rod 0.8
organism-1 identity staphylococcus 0.2
organism-1 identity streptococcus -0.3
organism-2 morphology rod -1.0
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soon criticized for its mathematical inconsistencies.
One of them is that it does not consider correlation
between propositions. For instance, if there are
two hypotheses, H; = ‘organism-1 is a streptococ-
cus’, with CF(H;) = 0.6, and H;, = ‘organism-1 is a
staphylococcus’, with CF(H;) = 0.3, then CF(H;
and H;) = min(0.6,0.3) = 0.3, whereas it should
be CF(H; and H,) = 0, because the hypotheses are
mutually exclusive.

Another problem is the lack of sensitivity in eqns
4 and 5; for example min(0.2,0.9) = min(0.2,0.2)
and max(0.9,0.9) = max(0.9,0.2).

Furthermore, MYCIN might assign a higher cer-
tainty factor to a hypothesis H, even if it is less
probable than another hypothesis H;. This anomaly
could occur because certainty factors of rules were
defined as measures of confirmation (the relative
increase in belief), while certainty factors of prop-
ositions were interpreted as measures of absolute
belief.

It was also pointed out that the combination of
convergent rules is valid only under some condi-
tions. These conditions resemble those of con-
ditional independence in the naive Bayes model.
However, while the assumption of conditional in-
dependence might in particular cases be justified
by means of causal arguments, no argument can be
made for the assumptions that are implicit in the
combination of rules. Therefore, MYCIN’s model,
rather than solving the main problem of the naive
Bayes, ran into more serious troubles (see Buchanan
and Shortliffe, 1984, ch. 10-12; Pearl, 1988, sec. 1.2).
(See Learning Rules and Productions; Expert
Systems; Resolution Theorem Proving; Deductive
Reasoning; Rule-based Thought)

PROSPECTOR’S BAYESIAN MODEL

PROSPECTOR was an expert system for geological
prospecting developed in the 1970s (Duda et al.,
1976). Like MYCIN, PROSPECTOR used if-then
rules, but instead of using ad hoc certainty factors,
it was based on the theory of probability. Each
rule had two parameters, namely the likelihood
ratios, which were obtained from human experts’
estimations.

The propagation of evidence in PROSPECTOR
consisted in computing the probability of the
consequence of a rule given the probability of the
antecedent. In order to simplify the computation,
PROSPECTOR made several assumptions of condi-
tional independence, in addition to approximations
and interpolations aimed at smoothing the incon-
sistencies in the probabilities elicited from human
experts.

PROSPECTOR became the first commercial suc-
cess of artificial intelligence when it assisted in the
discovery of a deposit of molybdenum worth about
one million dollars. However, this achievement did
not lessen criticism of the use of probabilistic
methods in expert systems. The assumptions and
approximations required by PROSPECTOR were
still largely unjustified.

DEMPSTER-SHAFER THEORY

In 1968, Dempster proposed a probabilistic frame-
work based on lower and upper bounds on prob-
abilities. In 1976, Shafer developed a formalism for
reasoning under uncertainty that used some of
Dempster’s mathematical expressions, but gave
them a different interpretation: each piece of evi-
dence (finding) may support a subset containing
several hypotheses. This is a generalization of the
‘pure’ probabilistic framework in which every find-
ing corresponds to a value of a variable (a single
hypothesis).

The main criticism of this theory from a semantic
point of view is the lack of robustness of the com-
bination of evidence. Given three single hypotheses
and two findings, it may happen that a hypothesis
receiving almost no support from any individual
finding is confirmed by the combination of them,
while the other two hypotheses are discarded
(Zadeh, 1986). Also, a small modification of the
evidence assignments may lead to a completely
different conclusion. This paradox poses no prob-
lem for Dempster’s (1968) interpretation (lower and
upper probabilities) or to Pearl’s (1988, sec. 9.1)
interpretation (probability of provability), but
seems counterintuitive in Shafer’s (1976) interpret-
ation, and for this reason some researchers have
proposed alternative formalisms based on different
combination rules.

The main problem of the Dempster-Shafer
theory in its original formulation is that its compu-
tational complexity grows exponentially with the
number of hypotheses. One of the solutions pro-
posed consists in building a network of frames of
discernment (in fact, a network of random vari-
ables), whose axiomatic definition is reminiscent
of the properties of conditional independence of
Bayesian networks.

BAYESIAN NETWORKS

A Bayesian network (Pearl, 1988) is a probabilistic
model that consists of a finite set of random vari-
ables {V;} and an acyclic directed graph whose
nodes represent those variables and whose arcs
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represent, roughly speaking, probabilistic depen-
dences between variables.

Dependences are quantified by means of a set of
conditional probability distributions (CPDs). Each
CPD involves a node and its parents in the graph:
P(vi|pa(v;)). (Node V; is a parent of V; if there is a
link V; — V; in the graph.) In the case of discrete
variables, each CPD is given by atable of prob-
abilities. The product of all the CPDs is a joint pro-
bability over all variables, from which it is possible
to obtain any other marginal or conditional prob-
ability, such as the a posteriori probability of any
variable given a set of evidence.

There are basically two ways of building a
Bayesian network. The automatic process involves
taking a database and applying one of the many
algorithms that yield both the structure and the
conditional probabilities. The manual process in-
volves two stages: building the structure of the
network by selecting the variables and drawing
causal links among nodes, as in Figure 1; and then
estimating the corresponding conditional probabil-
ity distributions. (See Machine Learning)

Ideally, those probabilities should be obtained
from objective data, such as databases or epidemi-
ological studies, but in practice the lack of objective
data often forces the knowledge engineer to obtain
the probabilities from human experts’ estimations.

Bayesian networks overcome the limitations of
the naive Bayes method in two ways. Firstly, they
can diagnose the simultaneous presence of several
diseases or failures, because each disease can be
represented by a different node. Secondly, the
properties of conditional independence are justi-
fied either by the statistical independencies in the
database, in the case of automatic construction, or
by the use of a causal graph elicited from a human
expert.

Figure 1. A simplified fragment of HEPAR-II, a medical
Bayesian network.

Bayesian networks are also superior to PRO-
SPECTOR in the justification of conditional inde-
pendencies, but at the price of an increase in
computational complexity (the time spent in com-
puting the posterior probabilities).

Causal Bayesian networks have additional ad-
vantages, such as the ease with which the model
can be extended or refined and its reasoning
explained to users.

The main criticisms of Bayesian networks are the
difficulty of building the network and the computa-
tional complexity of evidence propagation, which
is NP-hard: the time required by exact probabil-
ity updating algorithms depends mainly on the
structure of the network, while the complexity of
stochastic algorithms depends mainly on the
numerical parameters (probabilities). (See Comput-
ability and Computational Complexity; Bayesian
Belief Networks)

INFLUENCE DIAGRAMS

Influence diagrams are extensions of Bayesian net-
works which, in addition to random variables, cap-
ture available decision options and preferences
(utilities). Random variables are represented by
circles or ovals, decision nodes as squares or rect-
angles, and utility nodes as diamonds or parallelo-
grams. Influence diagrams are decision support
tools. They permit one to select the optimal deci-
sion, the decision that maximizes the expected util-
ity. They overcome the limitations of Bayesian
networks in their explicit representation of utilities
and in the possibility of selecting the questions
to ask or the tests to perform (goal-oriented
reasoning). Influence diagrams are closely related
to decision trees and Markov decision processes
(see Pearl (1988) chapter 6). (See Markov Decision
Processes, Learning of; Decision-making)

FUZZY LOGIC AND FUZZY SETS

Some of the sentences that we use in our daily life,
such as ‘it is cold today’, are neither completely
true nor completely false. These propositions are
called fuzzy. In fact, most of the adjectives that we
use daily could be interpreted as fuzzy predicates
(e.g., ‘young’, ‘rich’, ‘tall’, ‘happy’, ‘healthy’, ‘big’,
‘good’, ‘cheap’, ‘dark’, ‘crowded’, ‘heavy’, ‘fast’,
‘modern’).

Since in classical logic it is usual to assign 0 to
false propositions and 1 to true propositions, some
logicians have built multivalued logics in which
v(p), the truth-value of proposition p, might also
take values between 0 and 1. The truth-value of
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a composed proposition (negation, conjunction,
disjunction, implication, etc.) is a function of the
truth-values of the propositions that compose it:
for instance, v(p A q) = fa(v(p), v(q)).

Different choices of these logical functions lead
to different logics. For instance, Lukasiewicz logic,
Kleen logic, and standard fuzzy logic take the
‘minimum’ function for f,. Other fuzzy logics
may use different triangular norms for f,. (A
triangular norm is any function f, that is commu-
tative, associative, and monotone, and satisfies
f A(lr a) = ll.)

Similarly, there are several implication functions
f—, all of which satisfy certain conditions. In
principle, it would be possible to do inference
with fuzzy propositions and fuzzy predicates, but
in practice fuzzy inference is usually based on
fuzzy sets and fuzzy relations, as shown below.

Given a set A and an element x, the truth-value of
the proposition ‘x € A’ is usually called membership
degree and is represented by p4(x). Whereas in the
case of crisp (classical) sets p14(x) is either 0 or 1, in
the case of fuzzy sets u,(x) may be any number in
the interval [0, 1].

Each operation on fuzzy sets corresponds to
a fuzzy-logical operation. For instance, intersec-
tion corresponds to conjunction, since pang(x) =
v(xeANx€eB) =fr(pa(x), pg(x)). Therefore, fuzzy
logic can be viewed as the basis of fuzzy set theory.
However, it is more usual to view fuzzy set theory
as the basis for fuzzy logic.

The rule ‘if P4(x) then Pp(y)’, where A and B are
fuzzy sets and P, and Pj are their associated predi-
cates, is translated into a fuzzy relation given by
a—(x,v) = f-(na(x), pa(y)). Modus ponens con-
sists in combining this rule with an assertion P4 (x)
in order to obtain a new set B'. This process is
performed by composing the set A" with the rela-
tion pa_p. The resulting set B’ depends on the
logical functions involved in the composition. In
many applications of fuzzy logic this choice is
made more or less arbitrarily — a typical choice
is min as a norm, max as a conorm and Lukasie-
wicz’s implication — and leads to inconsistencies
and counterintuitive results (Fukami et al., 1980).
The correct way to approach this problem consists
in determining the desirable properties of fuzzy
inference and then selecting f,, fo, and f_. coher-
ently in order to ensure such properties (see, for
instance, Trillas and Valverde, 1985).

The main criticism of fuzzy logic is the lack of a
clear semantics, which leads to an arbitrariness in
the application of fuzzy techniques. In particular,
there are several definitions of degrees of member-
ship, but apparently none of them is used when

building real-world applications. All fuzzy systems
use numbers between 0 and 1, but the semantics of
those numbers and the way of assigning them
differ significantly from application to application.
Accordingly, there is no clear criterion for deter-
mining which norm or conorm to use in each case.

Additionally, there are several techniques of
fuzzy reasoning. We have already mentioned that
the properties of the fuzzy inference depend on the
choice of logical functions, and knowledge engin-
eers are often unaware of the inconsistencies that
may result from an arbitrary choice. There are also
other patterns of inference with fuzzy rules that are
not based on the composition of relations, and
other reasoning techniques, such as those involving
fuzzy numbers and fuzzy clustering, not presented
in this article. As a result, fuzzy logic consists in
practice of a toolbox of heterogeneous techniques
without clear indications for deciding which tool to
use in any particular case. Users of fuzzy logic often
devise ad hoc solutions for the representation and
combination of knowledge and data. (See Fuzzy
Logic; Vagueness)

ROUGH SETS

Rough sets (Pawlak, 1991) have been developed
since the 1980s as a tool for data analysis. In simple
terms, the starting point is a data table which
represents, for each object, the values of some attri-
butes and a label c: (a3, .. ., 4y, c). The final objective
of the analysis is to infer some classification rules of
the form: ‘If the attributes of a new object take
values (a1, ...,a,) then this object is c.’

Both the theoretical foundations and the inter-
pretation of rough sets are completely different
from those of fuzzy sets. The lack of a precise
boundary of a fuzzy set is a consequence of the
vagueness of some concepts, such as ‘big’ or ‘tall’,
and does not necessarily entail uncertainty. In
contrast, the lack of a precise boundary of a rough
set derives from the coarseness of the background
knowledge implicit in the data table. However, the
two theories are complementary and are usually
categorized together as ‘soft computing’.

NON-MONOTONIC LOGICS

Non-monotonic logics are an attempt to model a
pattern of human reasoning that consists in making
plausible, although fallible, assumptions about the
world, and revising them in the light of new evi-
dence. Upon hearing that “Tweety is a bird’, one
might assume that “Tweety can fly’ just because
‘most birds fly’; however, further evidence that
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‘Tweety is a penguin’ will lead one to retract this
assumption. The name ‘non-monotonic’ refers to
the fact that the addition of new clauses may lead
to either adding or retracting a previous conclu-
sion. In classical logic new information never in-
validates previous conclusions.

Several non-monotonic logics have been pro-
posed, such as Reiter’s logic, McCarthy’s circum-
scription, Doyle’s truth maintenance systems,
and Cohen’s theory of endorsements, each based
on some implicit assumptions about uncertainty
and preferences. Virtually all have been shown
to lead to undesirable behavior under some
circumstances.

All these logics are based on qualitative reasoning
patterns, and thus differ from the other methods
described above, which use and propagate numer-
ical information. Qualitative models are easier to
build, because they do not need to estimate quanti-
tative parameters. On the other hand, they are
unable to weight conflicting evidence. (See Quanti-
tative Reasoning)

CONCLUSION

Probability is the oldest formalism for reasoning
under uncertainty, and served as the first founda-
tion for computer-based reasoning systems in the
1960s. The unrealistic assumptions of the naive
Bayes model used in the first diagnostic systems,
the desire to differentiate the evidence in favor of a
hypothesis from the evidence against it, and the
need for a rule-based reasoning method, led to the
development of MYCIN’s model of certainty
factors. It was later shown that this model had
serious inconsistencies and required even more un-
realistic assumptions than those of naive Bayes.
PROSPECTOR used a Bayesian framework for
reasoning with rules, but it also relied on unjusti-
fied assumptions and approximations. Dempster—
Shafer theory was an attempt to overcome some of
the limitations of probabilistic reasoning, but its
computational complexity prevented it from being
used in practice. Fuzzy sets and fuzzy logic
emerged as tools for representing the vagueness
of natural language, and led to numerous applica-
tions in engineering, medicine, and many other
fields.

These four methods — MYCIN, PROSPECTOR,
Dempster—Shafer, and fuzzy sets — were developed
in the 1970s. In those years, many computer scien-
tists were convinced that probability was not an
adequate framework for the problems addressed
by artificial intelligence and expert systems. How-
ever, the emergence of Bayesian networks and

influence diagrams in the 1980s proved that it was
possible to build probabilistic models for real-
world problems. Many expert systems and soft-
ware packages based on these techniques became
commercial products in the 1990s.

Some researchers nowadays take the position
that probability is the only correct framework for
uncertain reasoning. Others, while agreeing that
probability theory is the best technique when
there is enough statistical information, argue that
itis hard to use in many practical cases, and for this
reason artificial intelligence still needs alternative
formalisms.
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The receptive field of a neuron is the extended
region of sensory space to which the neuron re-
sponds, including those stimuli that directly activate
or suppress the neuron’s activity, as well as those
stimuli that can modulate the neuron’s response to
other stimuli, but have no direct effect by them-
selves.

INTRODUCTION

Neurons in the sensory systems of touch (somato-
sensory), hearing (auditory) and vision can be de-
fined in terms of their receptive fields (RFs),
namely the regions of sensory space that drive
them most vigorously.

While neurons early in a sensory pathway have
compact RFs that respond to simple stimuli,
neurons at higher stages in the same pathway
could have large RFs with complex properties,
such as the ‘face-selective’ cells in the higher visual
inferior temporal (IT) region. Determining the
transformations in RF properties on passing from
stage to stage in a sensory pathway and deducing
the cortical circuitry that underlies such a trans-
formation lies at the heart of understanding sens-
ory processing.

The RFs of neurons, particularly at higher centers,
can be highly plastic and modifiable. Their re-
sponse properties may vary depending on the task
in which the individual is engaged, may be modu-
lated by attention, and can change over time with

sensory training or changes in sensory stimulation.
In particular, RFs can ‘learn’ to select features that
are most important in the individual’s environment
and thus adapt constantly, although within limits,
to changes in that environment.

This article will draw heavily on the visual
system to illustrate the principles of RF structure,
layout, response properties and plasticity, since
vision is the best-studied sensory system. How-
ever, the principles described here apply to all
sensory systems, and these parallels will be men-
tioned explicitly wherever possible.

HISTORICAL PERSPECTIVE

The concept of the receptive field (RF) was first
suggested by the British physiologist Sir Charles
Sherrington in the 1890s when he was studying
the scratch reflex in dogs. He used this term in the
book The Integrative Action of the Nervous System
(published in 1906) to capture his observation that
the reflex was spatially localized on the animal’s
body. Touching any spot on the dog’s back elicited
a scratch response directed to the same spot, which
Sherrington named the receptive field for that
reflex response.

In 1938, H. Keffer Hartline, then working at Johns
Hopkins University, introduced the use of the term
‘receptive field” to describe the response properties
of single nerve fibers. Using a painstaking proced-
ure he dissected out single fibers from the optic



