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Abstract

Building probabilistic and decision-analytic
models requires a considerable knowledge
engineering effort in which obtaining nu-
merical parameters is especially daunting.
Often knowledge engineers combine various
sources of information, such as information
reported in textbooks and professional liter-
ature, available statistics, and data collected
in practical settings. We show that combin-
ing probabilistic knowledge that originates
from different sources requires utmost care.
In particular, we demonstrate that even such
seemingly population-independent character-
istics as sensitivity and specificity of medical
symptoms can vary within a population, de-
pending purely on how the data are collected.
We offer guidelines for detecting when differ-
ent sources of data can be safely combined.
Our analysis shows that a knowledge engi-
neer should exercise much care in building
practical models.

1 Introduction

Development of probabilistic graphical models, such
as Bayesian networks [Pearl, 1988] and closely related
influence diagrams [Howard and Matheson, 1984], has
caused a considerable interest in applying probabil-
ity theory and decision theory in intelligent systems
(see [Henrion et al., 1991] for an accessible overview
of decision-analytic methods in AI). Graphical prob-
abilistic models have been successfully applied to
a variety of problems, including medical diagnosis,
prognosis, and therapy planning, machine diagnosis,
user interfaces, natural language interpretation, plan-
ning, vision, robotics, data mining, and many others
(for examples of successful real world applications of
Bayesian networks, see March 1995 special issue of
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the Communications of ACM). While in the sequel
we focus on Bayesian networks, our discussion ap-
plies equally well to influence diagrams, which could
be viewed as Bayesian networks enhanced with an ex-
plicit representation of decisions and utilities over the
outcomes of the decision process.

A Bayesian network consists of a qualitative part,
reflecting the structure of the model in terms of an
acyclic directed graph encoding probabilistic influ-
ences among a domain’s variables, and a quantita-
tive part, encoding the joint probability distribution
over these variables. While building the structure of a
model is in itself a challenging task that needs much
care, most practitioners consider it doable. In our ex-
perience, most medical experts, for example, either
give similar graphical structures or converge on the
same structure after some discussion [Diez et al., 1997,
Onisko et al., 1999]. Directed graphical models built
in practice usually mimic the causal structure of a do-
main, which, given the fundamental role of causality
in scientific understanding, explains expert agreement
on the structure of models. The structure of a di-
rected graphical model is subsequently quantified with
numerical probabilities. Quantification of a Bayesian
network consists of prior probability distributions over
those variables that have no predecessors in the net-
work and conditional probability distributions over
those variables that have predecessors. Typically, a
large model needs hundreds or even thousands of num-
bers and the task of quantifying a network is daunting.
Since the expert time is scarce and, therefore, costly,
knowledge engineers utilize various sources of infor-
mation. These include, for example, existing textbook
knowledge, available statistics, and databases of cases.

In this paper we focus on dangers related to combining
various sources of numerical data in the same model.
We show that lack of attention to whether the sources
are compatible and whether they can be combined can
lead to erroneous behavior of the model. We show
that data that seemingly capture the properties of the



same population of individuals can differ, depending
on how they were collected. The problem that we
are describing has nothing to do with problems re-
lated to small databases, missing data, or unreliable
expert judgment. Neither is it an instance of selection
bias, even though the two are related. It occurs when
data about the same population are collected in a dif-
ferent way and combined into one model. Even such
population-independent parameters as sensitivity and
specificity of medical symptoms and tests vary within
the same population as a function of the way the ob-
servations were collected. These statistical effects go
beyond simple and obvious differences in populations.
We study the problem on three simple examples and
offer guidelines for detecting when different sources of
data can be safely combined.

This work was inspired by our practical experiences
in building medical diagnostic systems. We encoun-
tered a puzzling phenomenon that led to an initial
disagreement between us. We have subsequently ana-
lyzed the problem gaining insight that escaped each of
us despite our field experience. We suspect that many
knowledge engineers face similar problems, often not
realizing them. We hope that this paper will make
them aware of the problem and prepare them better
for dealing with it in practice. We base the paper on
medical examples, but the principles applied and the
conclusions of this analysis are general.

We will use upper case letters, such as V, to denote
variables and lower-case letters, such as v, to denote
their outcomes. When a variable V' is propositional,
+v and —w will denote the truth and falsity of the
proposition respectively.

The remainder of this paper is structured as follows.
Section 2 presents a motivating imaginary example in
which we show a problem related to using knowledge
from different sources. Section 3 analyzes the example
in depth and explains statistical reasons for the some-
what surprising fact that combining the knowledge is
incorrect. Section 4 shows two more examples, gener-
alizes this analysis, and shows that the effect is due to
probabilistic conditioning on unmodeled variables. It
also gives guidelines for dealing with this problem in
practice. Finally, Section 5 discusses the implications
of our analysis for knowledge engineering.

2 A Motivating Example

Two internal medicine residents decided to build a sim-
ple diagnostic decision support system for a certain
disease D. In the first version of the system, they de-
cided to model only D and its most important symp-
tom S. They started by creating a Bayesian network
consisting of two nodes, D and S (see Figure 1).
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Figure 1: Example model under construction.

In the second stage, the residents focused on obtain-
ing numerical parameters for their network. These pa-
rameters consist of Pr(+d), the prevalence of D, and
the conditional probabilities of the symptom given the
disease, Pr(+s|+d) and Pr(—s|—d), also known as sen-
sitivity and specificity of the symptom. They decided
to obtain these parameters from a data set of previous
patient cases collected at their hospital. While there
was no disagreement about sensitivity and specificity
of the symptom, the residents had different opinion
about the prevalence. One of them said that they need
to take the prevalence as observed in their hospital,
while the other suggested that they should take the
prevalence for general population, so that their sys-
tem remains unbiased. After all, the second resident
argued, one of the reasons why people are admitted
to the hospital is because of symptom S, so if they
used the hospital prevalence rate, the evidence would
be double-counted. They ended up using the latter.

While the reader may disagree with the arguments
made by either of the residents, it is easy to imag-
ine obtaining the same model by the sheer fact that
prevalence of a disease in the general population is
often easy to find in a statistics yearbook or a mor-
bidity table and the sensitivity and specificity may be
in practice obtained from hospital records or elicited
from an expert with clinical experience, i.e., one who
has seen a large number of cases in clinical settings.

Let the prevalence of the disease, Pr(+d), taken from
an epidemiological study performed in the town in
question, be Pr(+d) = 0.01597. Let the hospital data
be summarized in the following contingency table.

N +d —d | Total
+s 729 63 792
—s 1 174 175
Total | 730 237 967

Sensitivity and specificity extracted from this table are

Pr(+s|+d)
Pr(—s|—d)

= 729/730 = 0.99863 (1)
= 174/237 = 0.73418 (2)

The most important type of reasoning in Bayesian net-
works is known as belief updating, and amounts to
computing the probability distribution over variables
of interest conditional on other, observed variables. In
other words, the probability distribution over the vari-
ables of interest is adjusted for a particular case, in



which some other model variables assume given val-
ues. A medical diagnostic system based on a Bayesian
network, for example, focuses on the probability dis-
tribution over possible diseases conditional on various
risk factors, symptoms, and results of medical tests
that constitute a patient case.

In our example model, the variable of interest is D and
we are interested in the posterior probability distribu-
tion over D given an observed value of S. According
to the thus constructed model, the probability that a
patient presenting with symptom S suffers from D is

Pr(+d| + s)
Pr(+s| + d) - Pr(+d)
Pr(+s| + d) - Pr(+d) + Pr(+s|~d) - Pr(—d)
= 0.05748 . (3)

Leaving aside a possible estimation error in obtaining
the probabilities from the database, the procedure fol-
lowed seems to be correct. Nevertheless, we are going
to show in the next section that this model and the
posterior probability computed by it, Pr(+d| + s) =
6%, are incorrect.

3 Analysis of the Problem

To understand this problem, we should model the vari-
able H, hospital admission, explicitly. Figure 2 shows
a graph modeling variables D, S, and H. From the
point of view of disease D, admission to the hospital
depends directly only on observing the symptom S.
In other words, H is independent of D given S, or
Pr(h|s,d) = Pr(h|s). Given the symptom S, knowing
whether the patient is in the hospital does not influ-
ence our belief in the presence of the disease, i.e.,

Pr(d|s,h) = Pr(d|s) , (4)

which means that, if we know whether the patient has
the symptom or not, the information that the patient
has been admitted to the hospital does not affect the
diagnosis.

Figure 2: A causal model for the hospital data set.
Note that since each data point is collected for a hos-
pital patient, the model is effectively conditioned on
H = +h, presence in the hospital. This is denoted by
a double circle in the model.

The second resident in our example suggested that us-
ing the prevalence of D observed in the hospital would

not be appropriate because it would double-count the
evidence from observing S. In order to demonstrate
that the argument behind the resident’s reasoning is
fallacious, we will first assume that the population of
the town in question is distributed as follows:

N +d -d Total
+s 972 84 1,056
-3 532 92,568 | 93,100
Total | 1,504 92,652 | 94,156

If a patient presenting with S is admitted to the hos-
pital with probability Pr(+h| + s) = 0.75 and a pa-
tient not presenting with S is admitted with probabil-
ity Pr(+h|-s) = 1/532 = 0.00188, the frequencies in
the database faithfully correspond to this probabilistic
model.

The prevalence of D is Pr(+d) = 0.01597, in agree-
ment with the result of the epidemiological study. Nev-
ertheless, sensitivity and specificity of the symptom S
in the general population are

Pr(+s|+d) =
Pr(-s|-d) =

972/1,504 = 0.64628
92,568/92,652 = 0.99909 ,

which is quite different from the sensitivity and speci-
ficity among the hospital patients (see Equations 1
and 2). This difference can be attributed purely to
the effect of conditioning on the patient population,
i.e., looking only at those patients who are in the hos-
pital. Given our assumption that random variation
was the only factor explaining presence or absence of
the symptom and admission to the hospital, these pa-
tients are in every respect identical to individuals in
the general population. We can compute Pr(+d| + s)
by applying Bayes theorem or directly from the table:

972
Pr(+d = —— =10.92045.
r(+d| + s) 1,056 0.92045 (5)
This result differs over an order of magnitude from
the value Pr(+d| + s) ~ 0.06 obtained in Equation 3.
What is the explanation of this paradox?

The answer is that the frequencies contained in the
database do not reflect the probabilities Pr(d, s) but
rather Pr(d,s| + h). For this reason, Equations 1
and 2 are wrong: they do not represent Pr(+s| +
d) and Pr(—s|-d) but rather Pr(+s| + d,+h) and
Pr(—s|—d, +h) respectively. If we apply Bayes theo-
rem properly, then

Pr(d|s, h) =
Pr(s|d,h)-Pr(d|h)
Pr(s|+d,h)-Pr(+d|h)+Pr(s|—d,h)-Pr(=d|h) *

From the hospital database, we obtain the prevalence
of D among the hospital patients Pr(+d| + h) =



730/967 = 0.75491. Hence

Pr(+d| + s, +h) =
0.99863-0.75491
0.99863-0.75491+0.26582:0.24509

=0.92045.  (6)

Comparing this result with Equation 5, we verify that
Pr(+d| + s) = Pr(+d| + s,+h), in agreement with
Equation 4.

To better understand the mistake made in Equations 1
and 2, we can profit from the fact that the variables
involved in this model are binary and write Bayes the-
orem in its odds-likelihood form,

ORpost(D) = ORpre(D) - LRp(s) (7)
where O Rpre(D) is the prior odds of D

Pr(+d)

Oftpre(D) = 5oy

ORp st (D) is the posterior odds of D given the evi-
dence S =s

_ Pr(+d|s)
Oftpost(D) = 5= gp5) -

and LRp(s) is the likelihood ratio for D given S = s

LRp(s) = % .

The probability Pr(+d|s) can be computed from
ORpost (D) by the following formula

Pr(+d|s) = _Oftpost(D)
" T+ ORpost (D)

We also have

ORH

post (D) = OR{)II‘Q(D) ’ LRg(S) 5

which only differs from Equation 7 in that all the prob-
abilities involved are conditioned on +h, presence in
the hospital. It is possible to show that

ORH

post (D) = ORpOSt (D)

(this equation is equivalent to Equation 4), as shown
in Table 1.

Nevertheless, if we mix general population probabili-
ties with hospital probabilities, we obtain

ORpot ®(D) = ORpre(D) - LR (s)

In particular, when S = +s, ORgég’tng(D) = 0.06098

and PrVTO"8(4d| + s) = 0.05748, which is the erro-
neous result obtained in Equation 3.

General Hospital

population | database

Pr(+d) 0.01597 0.75491
ORpre(D) 0.01623 3.0802
LRp(+s) 712.84 3.7568
ORpost (D) 11.571 11.571
Pr(+d| + s) 0.92045 0.92045

Table 1: Probabilities and ratios. The quantities in
the right column are all conditioned on +h.

We can also deduce that

wrong
ORpost (D) _ ORpre(D)

ORpost(D) a OR{)Ire(D) -

In our example,

ORpre(D)

T 597107 &
ORfie(D)

200 °

Please note that this ratio is the same for +s and —s.
It means that if the hospital prevalence is much higher
than the prevalence in the general population, then the
posterior probability due to a wrong combination of
probabilities will be much smaller than the true prob-
ability, as shown in the example above.

This ratio is also equal to

Wrong
ORpost (D) _ Pr(+d)/Pr(—d)
ORpost(D) Pr(+d|+h)/Pr(—d[+h)
— Pr(sh[=d) _ 1
— Pr(+h|+d) — LRp(+h) *

Therefore, the key parameter affecting the magnitude
of the error is LRp(+h), i.e., the proportion between
Pr(+h| + d) and Pr(+h|=d).

It follows from this equation that

PrWI‘OI’lg(_i_d‘S)

_ Pr(+d|s)
= Pr(4d[s)+(1_Pr(+d]s))-LRp (1 F)

or, equivalently,

Prwrong(+d‘s)
Pr(+d|s)
= (Pr(+d|s) + (1 — Pr(+d|s)) - LRp(+h))™" .

In summary, when building a model for this problem,
we can take the values of prevalence, sensitivity, and
specificity either from the general population or from
the hospital data. In both cases, the model will pre-
dict correctly the posterior probability of disease D.



If we mix data from these two sources, however, the
model will be incorrect. The assertion that combin-
ing data from two different sources is dangerous may
seem trivial. Nevertheless, when building probabilis-
tic models, knowledge engineers tend to concentrate
on choosing the right prevalence, because they are
aware that it is strongly population-dependent. They
often do not realize that sensitivity and specificity are
also population-dependent. In fact, it is quite nor-
mal for medical literature to offer values of sensitiv-
ity and specificity without an explanation of how they
were obtained, because they are assumed to be invari-
ant. However, selection of sensitivity and specificity
deserves as much attention as selection of prevalence.
In principle, there is no wrong choice of prevalence as
far as the sensitivity and specificity are chosen coher-
ently.

4 Extending the Model

The problem observed above can be explained in terms
of conditional independence. Conditional indepen-
dence is captured in causal networks by a a prop-
erty of the interaction between causality and proba-
bility known as causal Markov condition [Spirtes et
al., 1993]. This is related to a condition known as d-
separation [Geiger et al., 1990], which originates from
the pioneering work of Dawid [1979] in the domain of
statistics. We will discuss here two other similar cases
where the role of conditional independence becomes
apparent.

In our example,
Pr(d|s) = Pr(d|s, h) .

Therefore, Pr(d|s) could be computed from population
data,

Pr(d|s) = a - Pr(s|d) - Pr(d) ,
or from hospital data,

Pr(dls) = Pr(d|s,+h)
= «-Pr(s|d,+h)-Pr(d| +h) .

That is, we can remove node H and replace each popu-
lation probability by the corresponding hospital prob-
ability. From the point of view of diagnosis, both mod-
els will be equivalent.

However, when the model is extended to include more
variables, we must be more careful. As an example,
let us consider two symptoms, S; and S, of a certain
disease D, such that both S; and S may make the
patient go to the hospital (Figure 3).

Figure 3: Example model with two symptoms.

Also in this case,
Pr(d|s1, s2, +h) = Pr(d|s1, s2) , (8)

which means that when we know whether each symp-
tom is present or absent it is not necessary to take into
account the fact that the patient is at the hospital, be-
cause it does not affect the diagnosis. However, in this
case we cannot remove node H and replace each prob-
ability by the corresponding probability conditioned
on +h, as we did in the previous example, because in
general

Pr(d|s1,s2,+h)
# «-Pr(d| + h) - Pr(si|d, +h) - Pr(sa|d, +h) .

The reason is that when the value of H is known, Sy
and S are no longer conditionally independent given
D,ie.,

Pr(sy, sa|d, +h) # Pr(s1|d, +h) - Pr(sa|d, +h) .

Therefore, in this case, a model that uses hospital data
but does not explicitly represent the variable H, is
wrong. It will compute the probability Pr(d|s;,s2)
as if the symptoms were conditionally independent
given the disease. On the other hand, if the model
explicitly includes H, as shown in Figure 3, it then re-
quires four probability distributions: Pr(d), Pr(s1|d),
Pr(sa|d), and Pr(h|s, s2), the last of which cannot be
extracted from the hospital database. In this case it is
simply not possible to build an accurate causal model
based only on the hospital data. Equation 8 suggests
that it may be not worth to include H in the model.

To counterbalance this discouraging result, we will
show in the next example that in some cases it is possi-
ble to combine data from different sources into a single
model. Let us go back to the first example and assume
that, in addition to a symptom S, there is also a test
T performed at the hospital. Again, variable H in-
dicates whether the patient has been admitted to the
hospital (Figure 4). Please note that there is no link
T — H because in this example the value of T does
not affect the probability that the patient is admitted
to the hospital and, hence, is included in the database.
Therefore, Pr(t|d, h) = Pr(t|d), which is equivalent to



saying that the sensitivity and specificity of T' with
respect to D do not depend on H.

Figure 4: Example model with a symptom and a test.

As a consequence of the structure of the graph, S and
T are conditionally independent given D, even when
the value of H is known, i.e.,

Pr(s,t|d,h) = Pr(s|d, h) - Pr(¢|d) ,
which implies that

Pr(d|s,t, h)
= «-Pr(d|h) - Pr(s|d, h) - Pr(t|d) .

On the other hand, as D and H are conditionally in-
dependent given S and T', we have

Pr(d|s,t,h) = Pr(d|s,t)
= «-Pr(d) Pr(s|d) - Pr(t|d) ,

The comparison of these two equations shows that in
this case it is possible to build a model with only three
variables, D, S and T and it is not necessary to ex-
plicitly represent H, even if the model is to be used
at the hospital. Furthermore, the population prob-
abilities Pr(d) and Pr(s|d) can be safely replaced by
their corresponding hospital probabilities Pr(d| + h)
and Pr(s|d, +h) — provided that both of them are re-
placed simultaneously. Also, the absence of a causal
link T — H implies that Pr(¢|d) = Pr(t|d, h), i.e.,
the sensitivity and specificity of T" are the same in the
general population and at the hospital, which implies
that the values obtained from a hospital database can
be safely combined with those of the general popula-
tion. Of course, if the result of the test may increase
or decrease the probability that the patient is included
in the database, our graphical model should contain a
link T'— H, and the treatment of the problem would
be the same as in the example in which there were two
symptoms.

In summary, we have analyzed three examples. In
the first one, is was not necessary to explicitly rep-
resent the fact that the patient is at the hospital once
we know whether the patient presents with H. The
model can be built by using either Pr(d) and Pr(s|d)
or Pr(d| + h) and Pr(s|d, +h), but not a combination
of them. In the second example, it was not possible to

build an accurate causal model based on the hospital
data — it was necessary to use population data, which
may be harder to obtain. In the third example, we as-
sumed that the result of 7" did not lead to a selection
bias. As a consequence, its sensitivity and specificity
could be obtained from either the population or from
the hospital database and safely combined with any
other source.

In these examples, the variable that led to selection bi-
ases was the fact that the patient was admitted to the
hospital. Other variable that might lead to a similar
bias in some cases is the fact that the patient is alive.
The conclusion we extract from this section is that,
contrary to the usual practice in knowledge engineer-
ing, such variables may not be ignored. When build-
ing a Bayesian network, the causal graph must explic-
itly represent them. The causal Markov condition will
help the knowledge engineer determine whether some
of those variables can be removed from the graph, pro-
vided that the conditional probabilities of their ances-
tors are coherently chosen. In contrast, when a node
is not an ancestor of any of those selection variables,
its conditional probability is invariant and can be ob-
tained from any source.

5 Discussion

Knowledge engineers quantifying probabilistic models
usually combine various sources of information, such
as existing textbook knowledge, available statistics,
databases of cases, and expert judgments. In this pa-
per we focused on dangers that this practice is fac-
ing. We have demonstrated that lack of attention to
whether the sources are compatible and whether they
can be combined can lead to erroneous behavior of the
model. We studied the problem on three simple exam-
ples and offered guidelines for detecting when different
sources of data can be safely combined. We based
our explanation on the concept of probabilistic condi-
tioning with respect to the underlying causal model of
the domain. We have shown that data that seemingly
capture the properties of the same population of indi-
viduals can imply different numerical properties of the
population, depending on how they were collected.

Often we perceive such parameters as sensitivity and
specificity as fairly population-independent. After all,
sensitivity and specificity do not depend on the preva-
lence. We realize that different population character-
istics, such as sex, race, diet, etc., may influence both
sensitivity and specificity, but we forget about purely
statistical phenomena such as conditioning. Please
note that in our motivating example, the population
was identical and we could attribute presence in the
hospital to random variation. It was not the special



characteristics of the hospital patients that made them
develop the symptom more or less likely than the gen-
eral population.

An important conclusion that flows from our paper
is that it is important to study the graphical part of
the model under construction, reflect on the selection
criteria that were applied in collecting each source of
data, model them explicitly, and investigate whether
the variables that the data is conditioned on can po-
tentially bias the latter and affect the model.

Our motivating example was based on a medical data
set, but the same argument can be made with respect
to numbers obtained from human experts. Subjec-
tive probability judgments have been shown to rely
on judgmental heuristics [Kahneman et al., 1982] and
they are very sensitive to prior experiences (in fact
prior experiences are often all that probability judg-
ments are based on). Humans have been shown to be
able to match the probability of observed events with
an amazing precision [Estes, 1976]. Physicians work-
ing in a hospital will tend to match the sensitivity and
specificity of medical symptoms and tests that they ob-
serve in their practice. These are often determined by
the circumstances, such as what brought the patients
to the hospital or clinic in the first place. Physician
experts will tend to at least adjust the parameters to
what they observe in their practice. While their expe-
rience is valuable for building decision models for the
particular clinics where they have worked, in general
they cannot be readily used in other settings. Our rec-
ommendation is that the knowledge engineer warn the
expert about the need for a careful choice of popula-
tion for each probability estimate.

It seems to us that the incompatibility of various
sources of information is more prevalent that most
knowledge engineers realize. In every model, there
are unmodeled factors, which, if conditioned upon in
data collection, make data sets biased. It has been
known that in some cases conditioning affects quali-
tative, structural properties of models, such as prob-
abilistic independence, but to our knowledge no at-
tention has been paid to its impact on model building
through incompatibility of such seemingly robust local
properties, as conditional probabilities. We hope that
this paper will make knowledge engineers aware of the
problem and prepare them better for dealing with it
in practice.
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