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pages 23-29, Stanford, CA, 30 June 2000Criteria for Combining Knowledge from Di�erent Sources inProbabilistic ModelsMarek J. DruzdzelDecision Systems LaboratorySchool of Information SciencesUniversity of PittsburghPittsburgh, PA 15260, U.S.A.marek@sis.pitt.edu F. Javier D��ezDepartamento de Inteligencia Arti�cialUniversidad Nacional de Educaci�on a DistanciaSenda del Rey, 928040 Madrid, Spainfjdiez@dia.uned.esAbstractBuilding probabilistic and decision-analyticmodels requires a considerable knowledgeengineering e�ort in which obtaining nu-merical parameters is especially daunting.Often knowledge engineers combine varioussources of information, such as informationreported in textbooks and professional liter-ature, available statistics, and data collectedin practical settings. We show that combin-ing probabilistic knowledge that originatesfrom di�erent sources requires utmost care.In particular, we demonstrate that even suchseemingly population-independent character-istics as sensitivity and speci�city of medicalsymptoms can vary within a population, de-pending purely on how the data are collected.We o�er guidelines for detecting when di�er-ent sources of data can be safely combined.Our analysis shows that a knowledge engi-neer should exercise much care in buildingpractical models.1 IntroductionDevelopment of probabilistic graphical models, suchas Bayesian networks [Pearl, 1988] and closely relatedin
uence diagrams [Howard and Matheson, 1984], hascaused a considerable interest in applying probabil-ity theory and decision theory in intelligent systems(see [Henrion et al., 1991] for an accessible overviewof decision-analytic methods in AI). Graphical prob-abilistic models have been successfully applied toa variety of problems, including medical diagnosis,prognosis, and therapy planning, machine diagnosis,user interfaces, natural language interpretation, plan-ning, vision, robotics, data mining, and many others(for examples of successful real world applications ofBayesian networks, see March 1995 special issue of

the Communications of ACM). While in the sequelwe focus on Bayesian networks, our discussion ap-plies equally well to in
uence diagrams, which couldbe viewed as Bayesian networks enhanced with an ex-plicit representation of decisions and utilities over theoutcomes of the decision process.A Bayesian network consists of a qualitative part,re
ecting the structure of the model in terms of anacyclic directed graph encoding probabilistic in
u-ences among a domain's variables, and a quantita-tive part, encoding the joint probability distributionover these variables. While building the structure of amodel is in itself a challenging task that needs muchcare, most practitioners consider it doable. In our ex-perience, most medical experts, for example, eithergive similar graphical structures or converge on thesame structure after some discussion [D��ez et al., 1997,Oni�sko et al., 1999]. Directed graphical models builtin practice usually mimic the causal structure of a do-main, which, given the fundamental role of causalityin scienti�c understanding, explains expert agreementon the structure of models. The structure of a di-rected graphical model is subsequently quanti�ed withnumerical probabilities. Quanti�cation of a Bayesiannetwork consists of prior probability distributions overthose variables that have no predecessors in the net-work and conditional probability distributions overthose variables that have predecessors. Typically, alarge model needs hundreds or even thousands of num-bers and the task of quantifying a network is daunting.Since the expert time is scarce and, therefore, costly,knowledge engineers utilize various sources of infor-mation. These include, for example, existing textbookknowledge, available statistics, and databases of cases.In this paper we focus on dangers related to combiningvarious sources of numerical data in the same model.We show that lack of attention to whether the sourcesare compatible and whether they can be combined canlead to erroneous behavior of the model. We showthat data that seemingly capture the properties of the



same population of individuals can di�er, dependingon how they were collected. The problem that weare describing has nothing to do with problems re-lated to small databases, missing data, or unreliableexpert judgment. Neither is it an instance of selectionbias, even though the two are related. It occurs whendata about the same population are collected in a dif-ferent way and combined into one model. Even suchpopulation-independent parameters as sensitivity andspeci�city of medical symptoms and tests vary withinthe same population as a function of the way the ob-servations were collected. These statistical e�ects gobeyond simple and obvious di�erences in populations.We study the problem on three simple examples ando�er guidelines for detecting when di�erent sources ofdata can be safely combined.This work was inspired by our practical experiencesin building medical diagnostic systems. We encoun-tered a puzzling phenomenon that led to an initialdisagreement between us. We have subsequently ana-lyzed the problem gaining insight that escaped each ofus despite our �eld experience. We suspect that manyknowledge engineers face similar problems, often notrealizing them. We hope that this paper will makethem aware of the problem and prepare them betterfor dealing with it in practice. We base the paper onmedical examples, but the principles applied and theconclusions of this analysis are general.We will use upper case letters, such as V , to denotevariables and lower-case letters, such as v, to denotetheir outcomes. When a variable V is propositional,+v and :v will denote the truth and falsity of theproposition respectively.The remainder of this paper is structured as follows.Section 2 presents a motivating imaginary example inwhich we show a problem related to using knowledgefrom di�erent sources. Section 3 analyzes the examplein depth and explains statistical reasons for the some-what surprising fact that combining the knowledge isincorrect. Section 4 shows two more examples, gener-alizes this analysis, and shows that the e�ect is due toprobabilistic conditioning on unmodeled variables. Italso gives guidelines for dealing with this problem inpractice. Finally, Section 5 discusses the implicationsof our analysis for knowledge engineering.2 A Motivating ExampleTwo internal medicine residents decided to build a sim-ple diagnostic decision support system for a certaindisease D. In the �rst version of the system, they de-cided to model only D and its most important symp-tom S. They started by creating a Bayesian networkconsisting of two nodes, D and S (see Figure 1).

m m-D SFigure 1: Example model under construction.In the second stage, the residents focused on obtain-ing numerical parameters for their network. These pa-rameters consist of Pr(+d), the prevalence of D, andthe conditional probabilities of the symptom given thedisease, Pr(+sj+d) and Pr(:sj:d), also known as sen-sitivity and speci�city of the symptom. They decidedto obtain these parameters from a data set of previouspatient cases collected at their hospital. While therewas no disagreement about sensitivity and speci�cityof the symptom, the residents had di�erent opinionabout the prevalence. One of them said that they needto take the prevalence as observed in their hospital,while the other suggested that they should take theprevalence for general population, so that their sys-tem remains unbiased. After all, the second residentargued, one of the reasons why people are admittedto the hospital is because of symptom S, so if theyused the hospital prevalence rate, the evidence wouldbe double-counted. They ended up using the latter.While the reader may disagree with the argumentsmade by either of the residents, it is easy to imag-ine obtaining the same model by the sheer fact thatprevalence of a disease in the general population isoften easy to �nd in a statistics yearbook or a mor-bidity table and the sensitivity and speci�city may bein practice obtained from hospital records or elicitedfrom an expert with clinical experience, i.e., one whohas seen a large number of cases in clinical settings.Let the prevalence of the disease, Pr(+d), taken froman epidemiological study performed in the town inquestion, be Pr(+d) = 0:01597. Let the hospital databe summarized in the following contingency table.N +d :d Total+s 729 63 792:s 1 174 175Total 730 237 967Sensitivity and speci�city extracted from this table arePr(+sj+ d) = 729=730 = 0:99863 (1)Pr(:sj:d) = 174=237 = 0:73418 (2)The most important type of reasoning in Bayesian net-works is known as belief updating, and amounts tocomputing the probability distribution over variablesof interest conditional on other, observed variables. Inother words, the probability distribution over the vari-ables of interest is adjusted for a particular case, in



which some other model variables assume given val-ues. A medical diagnostic system based on a Bayesiannetwork, for example, focuses on the probability dis-tribution over possible diseases conditional on variousrisk factors, symptoms, and results of medical teststhat constitute a patient case.In our example model, the variable of interest is D andwe are interested in the posterior probability distribu-tion over D given an observed value of S. Accordingto the thus constructed model, the probability that apatient presenting with symptom S su�ers from D isPr(+dj+ s)= Pr(+sj+ d) � Pr(+d)Pr(+sj+ d) � Pr(+d) + Pr(+sj:d) � Pr(:d)= 0:05748 : (3)Leaving aside a possible estimation error in obtainingthe probabilities from the database, the procedure fol-lowed seems to be correct. Nevertheless, we are goingto show in the next section that this model and theposterior probability computed by it, Pr(+dj + s) �6%, are incorrect.3 Analysis of the ProblemTo understand this problem, we should model the vari-able H , hospital admission, explicitly. Figure 2 showsa graph modeling variables D, S, and H . From thepoint of view of disease D, admission to the hospitaldepends directly only on observing the symptom S.In other words, H is independent of D given S, orPr(hjs; d) = Pr(hjs). Given the symptom S, knowingwhether the patient is in the hospital does not in
u-ence our belief in the presence of the disease, i.e.,Pr(djs; h) = Pr(djs) ; (4)which means that, if we know whether the patient hasthe symptom or not, the information that the patienthas been admitted to the hospital does not a�ect thediagnosis. m m mj- -D S H = +hFigure 2: A causal model for the hospital data set.Note that since each data point is collected for a hos-pital patient, the model is e�ectively conditioned onH = +h, presence in the hospital. This is denoted bya double circle in the model.The second resident in our example suggested that us-ing the prevalence of D observed in the hospital would

not be appropriate because it would double-count theevidence from observing S. In order to demonstratethat the argument behind the resident's reasoning isfallacious, we will �rst assume that the population ofthe town in question is distributed as follows:N +d :d Total+s 972 84 1,056:s 532 92,568 93,100Total 1,504 92,652 94,156If a patient presenting with S is admitted to the hos-pital with probability Pr(+hj + s) = 0:75 and a pa-tient not presenting with S is admitted with probabil-ity Pr(+hj:s) = 1=532 = 0:00188, the frequencies inthe database faithfully correspond to this probabilisticmodel.The prevalence of D is Pr(+d) = 0:01597, in agree-ment with the result of the epidemiological study. Nev-ertheless, sensitivity and speci�city of the symptom Sin the general population arePr(+sj+ d) = 972=1; 504 = 0:64628Pr(:sj:d) = 92; 568=92; 652 = 0:99909 ;which is quite di�erent from the sensitivity and speci-�city among the hospital patients (see Equations 1and 2). This di�erence can be attributed purely tothe e�ect of conditioning on the patient population,i.e., looking only at those patients who are in the hos-pital. Given our assumption that random variationwas the only factor explaining presence or absence ofthe symptom and admission to the hospital, these pa-tients are in every respect identical to individuals inthe general population. We can compute Pr(+dj + s)by applying Bayes theorem or directly from the table:Pr(+dj+ s) = 9721; 056 = 0:92045 : (5)This result di�ers over an order of magnitude fromthe value Pr(+dj + s) � 0:06 obtained in Equation 3.What is the explanation of this paradox?The answer is that the frequencies contained in thedatabase do not re
ect the probabilities Pr(d; s) butrather Pr(d; sj + h). For this reason, Equations 1and 2 are wrong: they do not represent Pr(+sj +d) and Pr(:sj:d) but rather Pr(+sj + d;+h) andPr(:sj:d;+h) respectively. If we apply Bayes theo-rem properly, thenPr(djs; h) =Pr(sjd;h)�Pr(djh)Pr(sj+d;h)�Pr(+djh)+Pr(sj:d;h)�Pr(:djh) :From the hospital database, we obtain the prevalenceof D among the hospital patients Pr(+dj + h) =



730=967 = 0:75491. HencePr(+dj+ s;+h) =0:99863�0:754910:99863�0:75491+0:26582�0:24509 = 0:92045 : (6)Comparing this result with Equation 5, we verify thatPr(+dj + s) = Pr(+dj + s;+h), in agreement withEquation 4.To better understand the mistake made in Equations 1and 2, we can pro�t from the fact that the variablesinvolved in this model are binary and write Bayes the-orem in its odds-likelihood form,ORpost(D) = ORpre(D) � LRD(s) ; (7)where ORpre(D) is the prior odds of DORpre(D) = Pr(+d)Pr(:d) ;ORpost(D) is the posterior odds of D given the evi-dence S = sORpost(D) = Pr(+djs)Pr(:djs) ;and LRD(s) is the likelihood ratio for D given S = sLRD(s) = Pr(sj+ d)Pr(sj:d) :The probability Pr(+djs) can be computed fromORpost(D) by the following formulaPr(+djs) = ORpost(D)1 +ORpost(D) :We also haveORHpost(D) = ORHpre(D) � LRHD(s) ;which only di�ers from Equation 7 in that all the prob-abilities involved are conditioned on +h, presence inthe hospital. It is possible to show thatORHpost(D) = ORpost(D)(this equation is equivalent to Equation 4), as shownin Table 1.Nevertheless, if we mix general population probabili-ties with hospital probabilities, we obtainORwrongpost (D) = ORpre(D) � LRHD(s) :In particular, when S = +s, ORwrongpost (D) = 0:06098and Prwrong(+dj + s) = 0:05748, which is the erro-neous result obtained in Equation 3.

General Hospitalpopulation databasePr(+d) 0:01597 0:75491ORpre(D) 0:01623 3:0802LRD(+s) 712:84 3:7568ORpost(D) 11:571 11:571Pr(+dj+ s) 0:92045 0:92045Table 1: Probabilities and ratios. The quantities inthe right column are all conditioned on +h.We can also deduce thatORwrongpost (D)ORpost(D) = ORpre(D)ORHpre(D) :In our example,ORpre(D)ORHpre(D) = 5:27 � 10�3 � 1200 :Please note that this ratio is the same for +s and :s.It means that if the hospital prevalence is much higherthan the prevalence in the general population, then theposterior probability due to a wrong combination ofprobabilities will be much smaller than the true prob-ability, as shown in the example above.This ratio is also equal toORwrongpost (D)ORpost(D) = Pr(+d)=Pr(:d)Pr(+dj+h)=Pr(:dj+h)= Pr(+hj:d)Pr(+hj+d) = 1LRD(+h) :Therefore, the key parameter a�ecting the magnitudeof the error is LRD(+h), i.e., the proportion betweenPr(+hj+ d) and Pr(+hj:d).It follows from this equation thatPrwrong(+djs)= Pr(+djs)Pr(+djs)+(1�Pr(+djs))�LRD(+h)or, equivalently,Prwrong(+djs)Pr(+djs)= (Pr(+djs) + (1� Pr(+djs)) � LRD(+h))�1 :In summary, when building a model for this problem,we can take the values of prevalence, sensitivity, andspeci�city either from the general population or fromthe hospital data. In both cases, the model will pre-dict correctly the posterior probability of disease D.



If we mix data from these two sources, however, themodel will be incorrect. The assertion that combin-ing data from two di�erent sources is dangerous mayseem trivial. Nevertheless, when building probabilis-tic models, knowledge engineers tend to concentrateon choosing the right prevalence, because they areaware that it is strongly population-dependent. Theyoften do not realize that sensitivity and speci�city arealso population-dependent. In fact, it is quite nor-mal for medical literature to o�er values of sensitiv-ity and speci�city without an explanation of how theywere obtained, because they are assumed to be invari-ant. However, selection of sensitivity and speci�citydeserves as much attention as selection of prevalence.In principle, there is no wrong choice of prevalence asfar as the sensitivity and speci�city are chosen coher-ently.4 Extending the ModelThe problem observed above can be explained in termsof conditional independence. Conditional indepen-dence is captured in causal networks by a a prop-erty of the interaction between causality and proba-bility known as causal Markov condition [Spirtes etal., 1993]. This is related to a condition known as d-separation [Geiger et al., 1990], which originates fromthe pioneering work of Dawid [1979] in the domain ofstatistics. We will discuss here two other similar caseswhere the role of conditional independence becomesapparent.In our example,Pr(djs) = Pr(djs; h) :Therefore, Pr(djs) could be computed from populationdata, Pr(djs) = � � Pr(sjd) � Pr(d) ;or from hospital data,Pr(djs) = Pr(djs;+h)= � � Pr(sjd;+h) � Pr(dj+ h) :That is, we can remove node H and replace each popu-lation probability by the corresponding hospital prob-ability. From the point of view of diagnosis, both mod-els will be equivalent.However, when the model is extended to include morevariables, we must be more careful. As an example,let us consider two symptoms, S1 and S2, of a certaindisease D, such that both S1 and S2 may make thepatient go to the hospital (Figure 3).

m mm m--? ?S2 HD S1
Figure 3: Example model with two symptoms.Also in this case,Pr(djs1; s2;+h) = Pr(djs1; s2) ; (8)which means that when we know whether each symp-tom is present or absent it is not necessary to take intoaccount the fact that the patient is at the hospital, be-cause it does not a�ect the diagnosis. However, in thiscase we cannot remove node H and replace each prob-ability by the corresponding probability conditionedon +h, as we did in the previous example, because ingeneralPr(djs1; s2;+h)6= � � Pr(dj+ h) � Pr(s1jd;+h) � Pr(s2jd;+h) :The reason is that when the value of H is known, S1and S2 are no longer conditionally independent givenD, i.e.,Pr(s1; s2jd;+h) 6= Pr(s1jd;+h) � Pr(s2jd;+h) :Therefore, in this case, a model that uses hospital databut does not explicitly represent the variable H , iswrong. It will compute the probability Pr(djs1; s2)as if the symptoms were conditionally independentgiven the disease. On the other hand, if the modelexplicitly includes H , as shown in Figure 3, it then re-quires four probability distributions: Pr(d), Pr(s1jd),Pr(s2jd), and Pr(hjs1; s2), the last of which cannot beextracted from the hospital database. In this case it issimply not possible to build an accurate causal modelbased only on the hospital data. Equation 8 suggeststhat it may be not worth to include H in the model.To counterbalance this discouraging result, we willshow in the next example that in some cases it is possi-ble to combine data from di�erent sources into a singlemodel. Let us go back to the �rst example and assumethat, in addition to a symptom S, there is also a testT performed at the hospital. Again, variable H in-dicates whether the patient has been admitted to thehospital (Figure 4). Please note that there is no linkT ! H because in this example the value of T doesnot a�ect the probability that the patient is admittedto the hospital and, hence, is included in the database.Therefore, Pr(tjd; h) = Pr(tjd), which is equivalent to



saying that the sensitivity and speci�city of T withrespect to D do not depend on H .m mm m-? ?T HD S
Figure 4: Example model with a symptom and a test.As a consequence of the structure of the graph, S andT are conditionally independent given D, even whenthe value of H is known, i.e.,Pr(s; tjd; h) = Pr(sjd; h) � Pr(tjd) ;which implies thatPr(djs; t; h)= � � Pr(djh) � Pr(sjd; h) � Pr(tjd) :On the other hand, as D and H are conditionally in-dependent given S and T , we havePr(djs; t; h) = Pr(djs; t)= � � Pr(d) � Pr(sjd) � Pr(tjd) ;The comparison of these two equations shows that inthis case it is possible to build a model with only threevariables, D, S and T and it is not necessary to ex-plicitly represent H , even if the model is to be usedat the hospital. Furthermore, the population prob-abilities Pr(d) and Pr(sjd) can be safely replaced bytheir corresponding hospital probabilities Pr(dj + h)and Pr(sjd;+h) | provided that both of them are re-placed simultaneously. Also, the absence of a causallink T ! H implies that Pr(tjd) = Pr(tjd; h), i.e.,the sensitivity and speci�city of T are the same in thegeneral population and at the hospital, which impliesthat the values obtained from a hospital database canbe safely combined with those of the general popula-tion. Of course, if the result of the test may increaseor decrease the probability that the patient is includedin the database, our graphical model should contain alink T ! H , and the treatment of the problem wouldbe the same as in the example in which there were twosymptoms.In summary, we have analyzed three examples. Inthe �rst one, is was not necessary to explicitly rep-resent the fact that the patient is at the hospital oncewe know whether the patient presents with H . Themodel can be built by using either Pr(d) and Pr(sjd)or Pr(dj + h) and Pr(sjd;+h), but not a combinationof them. In the second example, it was not possible to

build an accurate causal model based on the hospitaldata | it was necessary to use population data, whichmay be harder to obtain. In the third example, we as-sumed that the result of T did not lead to a selectionbias. As a consequence, its sensitivity and speci�citycould be obtained from either the population or fromthe hospital database and safely combined with anyother source.In these examples, the variable that led to selection bi-ases was the fact that the patient was admitted to thehospital. Other variable that might lead to a similarbias in some cases is the fact that the patient is alive.The conclusion we extract from this section is that,contrary to the usual practice in knowledge engineer-ing, such variables may not be ignored. When build-ing a Bayesian network, the causal graph must explic-itly represent them. The causal Markov condition willhelp the knowledge engineer determine whether someof those variables can be removed from the graph, pro-vided that the conditional probabilities of their ances-tors are coherently chosen. In contrast, when a nodeis not an ancestor of any of those selection variables,its conditional probability is invariant and can be ob-tained from any source.5 DiscussionKnowledge engineers quantifying probabilistic modelsusually combine various sources of information, suchas existing textbook knowledge, available statistics,databases of cases, and expert judgments. In this pa-per we focused on dangers that this practice is fac-ing. We have demonstrated that lack of attention towhether the sources are compatible and whether theycan be combined can lead to erroneous behavior of themodel. We studied the problem on three simple exam-ples and o�ered guidelines for detecting when di�erentsources of data can be safely combined. We basedour explanation on the concept of probabilistic condi-tioning with respect to the underlying causal model ofthe domain. We have shown that data that seeminglycapture the properties of the same population of indi-viduals can imply di�erent numerical properties of thepopulation, depending on how they were collected.Often we perceive such parameters as sensitivity andspeci�city as fairly population-independent. After all,sensitivity and speci�city do not depend on the preva-lence. We realize that di�erent population character-istics, such as sex, race, diet, etc., may in
uence bothsensitivity and speci�city, but we forget about purelystatistical phenomena such as conditioning. Pleasenote that in our motivating example, the populationwas identical and we could attribute presence in thehospital to random variation. It was not the special



characteristics of the hospital patients that made themdevelop the symptom more or less likely than the gen-eral population.An important conclusion that 
ows from our paperis that it is important to study the graphical part ofthe model under construction, re
ect on the selectioncriteria that were applied in collecting each source ofdata, model them explicitly, and investigate whetherthe variables that the data is conditioned on can po-tentially bias the latter and a�ect the model.Our motivating example was based on a medical dataset, but the same argument can be made with respectto numbers obtained from human experts. Subjec-tive probability judgments have been shown to relyon judgmental heuristics [Kahneman et al., 1982] andthey are very sensitive to prior experiences (in factprior experiences are often all that probability judg-ments are based on). Humans have been shown to beable to match the probability of observed events withan amazing precision [Estes, 1976]. Physicians work-ing in a hospital will tend to match the sensitivity andspeci�city of medical symptoms and tests that they ob-serve in their practice. These are often determined bythe circumstances, such as what brought the patientsto the hospital or clinic in the �rst place. Physicianexperts will tend to at least adjust the parameters towhat they observe in their practice. While their expe-rience is valuable for building decision models for theparticular clinics where they have worked, in generalthey cannot be readily used in other settings. Our rec-ommendation is that the knowledge engineer warn theexpert about the need for a careful choice of popula-tion for each probability estimate.It seems to us that the incompatibility of varioussources of information is more prevalent that mostknowledge engineers realize. In every model, thereare unmodeled factors, which, if conditioned upon indata collection, make data sets biased. It has beenknown that in some cases conditioning a�ects quali-tative, structural properties of models, such as prob-abilistic independence, but to our knowledge no at-tention has been paid to its impact on model buildingthrough incompatibility of such seemingly robust localproperties, as conditional probabilities. We hope thatthis paper will make knowledge engineers aware of theproblem and prepare them better for dealing with itin practice.AcknowledgmentsThe �rst author was supported in part by the NationalScience Foundation under Faculty Early Career De-velopment (CAREER) Program, grant IRI{9624629,and by the Air Force O�ce of Scienti�c Research un-
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