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Abstract

This paper considers a method that com-
bines ideas from Bayesian learning, Bayesian
network inference, and classical hypothesis
testing to produce a more reliable and ro-
bust test of independence for constraint-
based (CB) learning of causal structure. Our
method produces a smoothed contingency ta-
ble N xyz that can be used with any test of
independence that relies on contingency ta-
ble statistics. Nxyz can be calculated in
the same asymptotic time and space required
to calculate a standard contingency table, al-
lows the specification of a prior distribution
over parameters, and can be calculated when
the database is incomplete. We provide the-
oretical justification for the procedure, and
with synthetic data we demonstrate its bene-
fits empirically over both a CB algorithm us-
ing the standard contingency table, and over
a greedy Bayesian algorithm. We show that,
even when used with noninformative priors,
it results in better recovery of structural fea-
tures and it produces networks with smaller
KL-Divergence, especially as the number of
nodes increases or the number of records de-
creases. Another benefit is the dramatic re-
duction in the probability that a CB algo-
rithm will stall during the search, providing
a remedy for an annoying problem plaguing
CB learning when the database is small.

1 Introduction

Constraint-based (CB) causal discovery searches a
database for independence relations and constructs
graphical structures called “patterns” which represent
a class of statistically indistinguishable directed acyclic
graphs (DAGs). This method contrasts to those based

Marek J. Druzdzel
Decision Systems Laboratory
Intelligent Systems Program and
School of Information Sciences
University of Pittsburgh
Pittsburgh, PA 15260

on Bayesian concepts, which typically reduce to a
search-and-score procedure on the space of DAGs.

Both CB and Bayesian approaches have advantages
and disadvantages [9]. Constraint-based approaches
are relatively quick, deterministic, and have a well-
defined stopping criterion; however, they rely on an ar-
bitrary significance level to test for independence, and
they can be unstable in the sense that an error early on
in the search can have a cascading effect that causes
many errors to be present in the final graph [13, 4].
Both approaches have the ability to incorporate back-
ground knowledge in the form of temporal ordering, or
forbidden or forced arcs, but Bayesian approaches have
the added advantage of being able to flexibly incorpo-
rate users’ background knowledge in the form of prior
probabilities over the structures and over the param-
eters of the network. Bayesian approaches are capa-
ble of dealing with incomplete records in the database
by incorporating Monte Carlo sampling or greedy hill-
climbing approaches such as the EM algorithm. The
most serious drawback to the Bayesian approaches is
the fact that they require a Markov chain search over
structures and thus can be slow to converge.

When data sets are small, the relative benefits of the
two approaches are unclear. One one hand, Bayesian
methods seem to have an advantage because they can
accommodate prior distributions which have a smooth-
ing effect on the distributions in the sparse-data limit,
on the other hand, using independence information can
help restrict the massive search space [6].

Several approaches have attempted to mix the bene-
fits of CB and Bayesian learning. Researchers have
investigated performing greedy Bayesian searches over
the space of equivalence classes of DAGs [11, 1]. More
recently, Kocka and Castelo [10] investigated search-
ing over the space of DAGs by using search operators
that consider the search boundary to be defined by the
equivalence class.

Researchers have also developed two-stage hybrid al-



gorithms, where the first stage performs a constraint-
based search and uses the resulting graph as input into
a second-stage Bayesian search. In particular, [12] use
the PC algorithm to generate an absolute temporal or-
dering on the nodes for use with the K2 algorithm [3],
which requires such an ordering on the input. Spirtes
and Meek [14] use the PC algorithm to generate a
good starting graph for use in their greedy search over
the space of essential graphs. Dash and Druzdzel [4]
took the opposite approach, using an instability in CB
learning to search the space of patterns, scoring each
pattern using a Bayesian score. Friedman et al. [6] use
independence information to restrict the search space
of a greedy Bayesian algorithm.

Cooper [2], suggested a Bayesian independence test as
part of an approximate constraint-based learning algo-
rithm. This Bayesian test could evaluate conditional
independence relations (X L Y | Z), where |Z| =1, by
constructing various network fragments, scoring them
according to a Bayesian score, and combining each
score together into a single measure for independence.
This approach is the closest to the one we present in
this paper. Our technique differs in how the fragments
are constructed, allowing arbitrary significance tests.

Our contributions in this paper are the following: (1)
We develop a method by which it is possible to cal-
culate a smoothed contingency table N xyz that can
be calculated with missing data, allows the specifica-
tion of priors, and can be calculated in the same time
and with the same space requirements as a standard
contingency table. (2) We provide theoretical justifica-
tion for the use of N xyz, (3) we demonstrate empiri-
cally that N xyz improves CB learning when using the
chi-squared test chi-squared(X,Y | Z,Nxyz), and (4)
we demonstrate empirically that when the number of
records is small or the number of nodes is large, a CB
algorithm can outperform a Bayesian greedy search
over the space of DAGs.

In Section 2 we formally frame the problem,
state our assumptions and notation, and re-
view constraint-based learning techniques. In
Section 3 we introduce a hybrid independence
test, Hybrid-IT(X, Y |Z, D), that uses N xyz to-
gether with any standard test of independence
Std-IT(X,Y | Z,D, ), and prove the soundness and
completeness of Hybrid-IT(X, Y |Z, D). In Sec-
tion 4 we present experimental results, and in Section 5
we present our conclusions and future directions.

2 Learning Causal Models

Throughout this paper we use the notation V =
{V1,Va,...,Vn} to denote a set of N random vari-
ables, and D(V) to denote a database of N, records

containing specific instances of the vector V: D =
{V = vy,...,V = vy }. In general we use bold-
face notation to denote a set of objects and non-bold
to denote singletons, when possible. We use upper-
case symbols to denote random variables and lower-
case symbols to denote specific values taken on by a
random variable, e.g., V; = v or V = v. We use
Rng(X) to denote the range of a variable X.

We use the notation (X L Y | Z) to denote the fact
that X is independent from Y given the set Z.

Assumption 1 (Multinomial variables) We as-
sume that each node X; is a discrete variable with r;
possible states.

We let 7,4, denote the maximum number of states:
Tmaz = max; ;. We let vF indicate the k-th state of
variable V; € V: Rng(V;) = {v},v2,...,v]*}.

U,
A directed graph G(V) is defined as a pair (V,E),
where E is a set of directed edges V; — V;, Vi, V; € V.
We use the notation P§ to denote the parent set of
Vi in G; however if G is clear by the context we will
drop the superscript. We use p] to denote the j-th
configuration of the parents of V;: P; € {p;,...,p¥}.

Definition 1 (Bayesian network) A Bayesian net-
work model M over a set of wvariables V =
{W,...,Vn} is a pair (G,0), where G(V) is a
DAG over V and 0 are a set of conditional prob-
abilities: 6 = {05 : YV (ijk)} such that 0, =
P(X;=aF | P, =pl).

In general we use the common (ijk) coordinates nota-
tion to identify the k-th state and the j-th column of
the i-th node in the network. In a causal model M (V).
we use the symbol 8;; to denote the entire probabil-
ity distribution function for the i-th node and the j-
th column, and the symbol 8 to denote the collective
parameters of the network. We use “causal model”
interchangeably with “Bayesian network”.

Once a graphical structure G has been constructed a
Bayesian estimate for the parameters @ can be cal-
culated in closed-form, given a few standard assump-
tions.

Assumption 2 (Dirichlet priors) The prior beliefs
over parameter values are given by a Dirichlet distri-
bution.

We let N;;i, denote the number of times in the database
that the node X; achieved state k when P; was in the
j-th configuration, and we let o;;, denote the Dirich-
let hyperparameters corresponding to the network pa-
rameter 0;;,. We assume the hyperparameters o, are
given or can be calculated in O(1) time. For example



the non-informative K2 criterion [3] a;j, = 1 for all
(ijk) will satisfy this requirement.

Assumption 3 (Parameter independence) For
any given mnetwork structure S, each probability
distribution 65 is independent of any other probability
distribution Oy :

N qi

P |S)=111I7@s15) (1)

i=0j=1

Given the assumption of parameter independence and
Dirichlet priors, it can be shown that a single network
with a fixed set of parameters 8 given by

(2)

will produce predictions equivalent to those obtained
by averaging over all parameter configurations. [7] ar-
gued that under the canonical coordinate system these
parameters represent a maximum a posteriori (MAP)
configuration.

CB learning methods systematically check the data for
independence relations and use those relationships to
infer necessary features of the structure. The specific
algorithm that we use in our experiments is a variant
of the PC algorithm, and the reader is referred to [13]
for details and proofs of correctness of the procedure.
The main idea is presented below as a sketch.

We assume the existence of a standard independence
test Std-IT(X,Y | Z,D,«a), a set of variables V, a
complete database D, and a significance level a. The
algorithm is sketched as follows:

Procedure 1 (PC algorithm)
Given: V, D and «a.

1. S, = Find-Independence-Graph(V, D, a),
2. S = Orient-Edges(S.,, D),
8. Return S.

Find-Independence-Graph(V, D, «) takes a set of vari-
ables V and a database D as input and out-
puts an undirected graph S, such that an edge
X—Y exists in S, iff there does not exist a sub-
set Z C V \ {X,Y} (including the empty set)
such that Std-IT(X,Y |Z,D) = true. S, is con-
structed by checking conditional independence re-
lations and removing edges from an initially com-
plete undirected graph whenever an independence is
found. The PC algorithm makes this procedure ef-
ficient by successively checking higher-order depen-
dencies while restricting the set of nodes that need

to be conditioned on. Specifically, let Adj(A) de-
note the set of variables that are adjacent to A, then
Find-Independence-Graph(V, D, a) can be sketched as
follows:

Procedure 2 (Find-Independence-Graph(V, D, «a))
1. Let n =0.
2. Let S, be a complete undirected graph.
3. Repeat:

(a) For all pairs of wvariables (X,Y), check
Std-IT(X,Y | Z,D, ) for all subsets Z such
that |Z] = n and Z C Adj(X) or Z C
Adj(Y).  If there exists a Z such that
Std-IT(X,Y |Z,D,a) = true then remove
the edge X—Y from S,.

(b) Setn=n+1

Until no variable has greater than n adjacencies,
or a stopping condition is satisfied.

4. Return S,,.

The sub-procedure Orient-Edges(Sy, D) infers direc-
tionality of some arcs in S by searching for indepen-
dence relations characteristic of v-structures and by
avoiding cycles. We use a modified version of PC that
disallows cycles and bi-directed arcs. This modifica-
tion was justified by the fact that our generating net-
works were acyclic with no latent variables, so if PC
inferred such structures it must have been due to an
error in some hypothesis tests during the search. This
modification also makes comparison of the resulting
structures much easier.

The graphs produced by Cl-based procedures are par-
tially directed graphs which go by several names in the
literature, of which “pattern” and “essential graph”
are the most common. Patterns summarize the struc-
ture of a Bayesian network that can be inferred from
a list of independencies alone.

CB methods have the advantage of possessing clear
stopping criteria and deterministic, systematic search
procedures. On the other hand they are subject to sev-
eral instabilities: namely, if a mistake is made early on
in the search, it can lead to incorrect sets Adj(A) and
Adj(B) later in the search which may in turn lead to
bad decisions in the future, which can lead to even
more incorrect sets Adj(A), etc. This instability has
the potential to cascade, creating many errors in the
learned graph. Similarly, incorrect edges in S, can
lead to incorrectly oriented arcs in the final graph S.
It is for these reasons that the quality and reliabil-
ity of the independence test is critical for practical
constraint-based algorithms. Another disadvantage of
CB methods is the difficulty of performing a classical
(non-Bayesian) independence test when some data is
missing from the database.



3 A Hybrid Independence Test

Standard statistical tests of independence, such as the
chi-squared test, chi-squared(X,Y | Z,Nxyz), typi-
cally require the calculation of a set of statistics:

Nxyz = {Nzyz : V2 € Rng(X), y € Rng(Y), z € Rng(Z)},

where N, denotes the number of times that variable
X took value z, Y took value y and Z took configura-
tion z in the database.

In this section we present a pseudo-Bayesian test of
independence that uses Bayesian network inference to-
gether with a standard hypothesis test to perform tests
of conditional independence. Our technique makes use
of the fact that given a probability distribution P(V),
it is possible to calculate the expectation of Nxyz for
a database of size N as:

(Nayz) = N - P(z,y,2). (3)

For a Bayesian network B(V') over the set of vari-
ables V! = {X,Y} U Z, Equation 3 can be calcu-
lated in O(|V’]) time. When V' includes variables
other than setX,Y U Z, however, this calculation is
less trivial because one cannot make full use of the
ability to factorize the network; thus requiring in the
worst case marginalization over the set of variables
VA\{{X,Y}UZ}. Even if this calculation were feasible
to perform, it would not in general be possible to use
Bayesian network inference to estimate a contingency
table in the inner loop of a CB discovery algorithm
because we don’t know the structure of the Bayesian
network.

We propose a framework whereby network fragments
containing only the variables relevant to the particu-
lar independence calculation are passed to a pseudo-
Bayesian independence tester. We thus make use of
the function CalcStats(N, B) which takes a total num-
ber of records N and a Bayesian network B as input
and outputs the expected statistics (Nxyz) according
to Equation 3:

Procedure 3 (CalcStats(X,Y,Z, N, B))
Given: X, Y, Z, N and B.

1. Calculate P(x,y,z) for all x € Rng(X), y €
Rng(Y) andz € Rng(Z) using forward traversal
over the network B.

2. Let Nypy, = N - P(z,y,2z) for all z, y and z.

3. return Nyys.

The complexity of Step 3 is O(|Z| - |[Nxyz|) since Dy
includes only the variables {X,Y} U Z.

We also assume the existence of a standard indepen-
dence test Std-IT(X,Y |Z,Nxyz,o) which returns
true or false based on the statistical threshold «. The
hybrid independence test is defined as follows:

Procedure 4 (Hybrid-IT(X, Y |Z, D))
Given: D, X, Y, Z, and a.

1. Construct a DAG fragment Dy over the set
{X,Y}UZ as follows: direct edges from X —Y
and from Z; —Y for all Z; € 7.

2. Define the BN model By = (Dy, 0¢), where 05 are
given by Equation 2, and let N, = |D|.

3. Let Nxyz = CalcStats((X,Y,Z, N, B¢)),
4. Return Std-IT(X,Y | Z,(Nxyz),).

By defines a joint probability over {z,y,z} equiva-
lent to model averaging over all sets of parameters
for Dy. Nxyz is thus a Bayesian estimate of the
expected sufficient statistics given the database D.
Our independence test then uses this smoothed ta-
ble to perform a classical hypothesis test; thus we
call this a “pseudo-Bayesian” method. We label the
algorithm corresponding to the PC algorithm using
Hybrid-IT(X, Y |Z, D) the PC* algorithm. The
time and space complexity required to calculate all pa-
rameters in Dy are O(N - |[Nxyzl|), which is the same
as that required to calculate Nxyz directly from data.

The process of replacing the observed statistics of D
with the expected statistics defined by By has the
net result of changing the hypothesis being tested by
Std-IT(X,Y | Z,a). A standard hypothesis test tests
whether the cells of the contingency table calculated by
the data differ from the cells assuming independence;
whereas Hybrid-IT(X, Y | Z, D) tests the same con-
dition of the contingency table N xyz.

However, by projecting the distribution to be consid-
ered onto a particular Bayesian network structure, we
have imposed independencies on NXYZ, and it is not
obvious that an independence in the smoothed contin-
gency table gives us any information about the true
independence of X and Y given the set Z. The fol-
lowing theorems show that the process of construct-
ing Dy in Procedure 4, despite the fact that inde-
pendencies between the Z; variables are imposed, will
not alter the outcome of a perfect independence test
Std-IT(X,Y | Z,Nxyz).

The following is a well-known theorem, reproduced
here for completeness:

Lemma 1 Let P(V) be the joint distribution on the
set V={X,Y}UZ for some set Z = {Zy,...,Z,},
then for arbitrary x;,x; € Rng(X), y € Rng(Y') and



z € Rng(Z), P(y | z,z;) = P(y | z,z;) if and only if
(X LY |2).

Definition 2 (projection) If P(V) is a joint proba-
bility distribution over a set of variables V, and G(V)
is a DAG over V then the projection P(V) of P onto
G is the distribution defined by the Bayesian network
(G, 0), where the parameters 6 are given by the asso-
ciated conditional distributions in P:

Oijr = P(X; =2 | P, =p!),V 0, €0

Theorem 1 Let P(V) be the joint distribution on the
set V={X,Y}UZ for some set Z = {Zy,...,Zn},
and let G be the graph fragment defined in Procedure 4
for the test (X LY | Z). Then

(XLY|Z)pe (X LY |Zp,.

Proof: For arbitrary v = {z,y} U z such that
x € Rng(X), y € Rng(Y), and z € Rng(Z), by
definition of P(V),, P(y | z,2z); = P(y | z,2); the
result follows from Lemma 1. O

Theorem 1 shows that the structure of G; defined by
Procedure 4 does not impose constraints that will alter
the test of conditional independence (X L Y | Z).

Using Hybrid-IT (X, Y | Z, D) has several advantages
over a standard independence test: First, the use of
Equation 2 allows prior knowledge to be accounted for
in a normative fashion (although priors over structure
cannot be specified explicitly, Heckerman et al. [8] sug-
gest a means of deriving hyperparameters c;j, that
are consistent with a prior network elicited from an
expert). Second, calculating parameters using Equa-
tion 2 can be accomplished even when the database D
is incomplete by using the EM algorithm or MCMC
methods. The EM algorithm requires Bayesian net-
work inference to be performed, so can be slow in gen-
eral; however, due to the fact that the network frag-
ments are small, in principle it should be relatively fast
for this particular task. Finally, the use of even non-
informative priors should provide a smoothing effect
which improves the quality and stability of indepen-
dence tests, especially for high-order tests and small
data sets. In Section 4 we demonstrate these benefits
empirically.

4 Experimental Tests

In this section we describe experimental investigations
that were designed to test the performance of Proce-
dure 4 on synthetic data.

For all experiments networks were generated randomly
using the following procedure which directed arcs from
X; — X only if j > 4

Procedure 5 (Random structure generation)
Given: N and K.

Do:
1. Create N nodes X1, Xo,...,XnN.
2. For each node X; do:
(a) Let N}, .., =min(i — 1, K).
(b) Generate a random integer Npq € [0, N} ...

(c) Randomly pick Npq parents uniformly from
the list {Xl, . ,Xz‘,l}

Once a network structure had been generated, each
node distribution 6;; was sampled independently from
a uniform distribution over parameters. In all exper-
iments we assumed the generating graph was sparse,
ie., K =5.

We tested PC* against PC with a standard contin-
gency table and against a Bayesian search procedure
that used a greedy thick-thin (GTT) approach. GTT
starts with an empty graph and repeatedly adds the
arc (without creating a cycle) that maximally increases
the marginal likelihood P(D | S) until no arc addition
will result in a positive increase, then it repeatedly re-
moves arcs until no arc deletion will result in a positive

increase in P(D | 5).

The outer-loop of each test performed the same proce-
dure: Given the number of nodes IV, number of records
N, and total number of trials Ni,;qis, @ method M was
compared to PC* by doing the following:

Procedure 6 (Basic testing loop)
Given: N, N,., and Nypjqrs. Do:

1. Cjenemte Nirials
B(N).

random Bayesian networks

2. For each network B(N) do:

(a) Generate N, records.

(b) Learn a pattern P with M, and learn pattern
P* with PC*.

(c) Generate DAGs G and G* by randomly di-
recting all undirected edges of P and P*, re-
spectively, without creating new v-structures
or cycles.

(d) Construct the Bayesian networks B = (G, 0)
and B* = (G*,0) using Equation 2 to cal-
culate 6 and 6.

(e) Measure the number of incorrect adjacencies
A, A* and incorrect v-structures V, V* for
P and P*, respectively.

(f) Calculate the differences Aqqj = A — A* and
A, =V —=V"* between the number of incorrect
adjacencies and v-structures, respectively:



(9) Calculate the percent increase Ay in KL-
Divergence between B and B*:

KL-Div(B, B) — KL-Div(1B3, B*)
KL-Div(B, B*)

Ay =

3. Average Aggj, Ay, and Ay over all Nipiqrs.

Some final experimental details: (1) The running times
7 and 7* of each algorithm was recorded. (2) In all ex-
periments we adopted the K2 criterion [3] which sets
o, = 1forall (7, 7, k). This criterion has the property
of weighting all distributions of parameters equally.
(3) All variables in our tests were binary: r; = 2 for
all i. (4) Except when explicitly mentioned, we used a
significance level of o = 0.05 for our statistical tests.
All code used for our experiments was based on SMILE
[5], a C4++ library for constructing probabilistic deci-
sion support models."

4.1 Experiments

Our experiments performed Procedure 6 with N €
{10, 20, 40, 80} for a range of number of records N;..
For N € {10,20}, Nyrias = 1000; for N € {40, 80},
Niriats = 100. The results showing the performance
of PC* over PC and GTT are shown in Table 1. The
columns labelled CI denote the one-sided 99% confi-
dence intervals. Positive results in any column indi-
cates that PC* recorded fewer structural mistakes or
lower KL-divergence.

These results show that PC* constructs significantly
better networks by all three measures at low N, than
does PC; however, as N, increases the difference de-
creases, sometimes losing the 99% significance. In only
six of the 54 measurements did PC outperform PC* at
the 99% level. These results also show that at low N,
and high N PC* outperforms GTT in terms of both
structural features and KL-divergence. However, as
the number of records per node increases, GTT be-
gins to make significant gains on PC* ; however, it
was interesting to note that even as IV, increased to
its highest measured values, PC* typically made fewer
errors (significant at the 99% level) in terms of the
adjacencies of the network than did GTT.

One reason for the dramatic improvement in PC* over
PC as N is increased or N, is decreased is due to a
known problem of CB algorithms. As N grows large
or N, grows small, PC has a tendency to stall, i.e.,
the time th, for a particular run I to finish could

'SMILE can be downloaded from
http://www2.sis.pitt.edu/ genie; however the learn-
ing functionality required for our experiments is not yet
available for public release.

N, Adpg | CI 4, | Cl Ay Cl
50] 1.63]| 0.24] 8.07] 0.95] 21.8%| 3.6%
100 0.81] 0.19] 4.21] 0.71] 12.7%| 3.1%
400] 0.22| 0.10] 1.15| 0.36] 6.1% | 2.5%)
z 1600] 0.05] 0.05] 0.14| 0.15] 5.7%| 4.0%)
6400] -0.06[ 0.04] -0.08| 0.09] 110% | 320%
50] 8.44| 0.66] 55.9] 5.6] 29.9%| 2.6%
100] 3.86| 0.48] 26.2| 4.1] 15.9%| 2.5%

=10

o
o |0 200] 083 022] 56| 18] 46%| 2.0%
g |z 1600] 028/ 03] 16| 11| 32%| 1.8%
“ 6400] -0.14] 0.07] -0.60] 0.42| 3.5%] 2.5%
= 100] 91| 26| 84 42 14%] 10%

400 24 1.4 43 31 5.8%| 8.1%
zZ 16000 -0.5[ -1.0 2| 12 8.1%)| 6.1%)
64001 -1.9| 0.6] -10.8] 2.3 5.2% 9.0%
200] 20.1] 5.3] 530 240 32%| 16%
400 6.5 2.7] 160[ 110 35% | 23%)
z 1600 -2.1] -1.0 -4l 7.8 8.4% | 7.2%
64001 -2.7| 3.8 60| 150 12% | 15%
501 1.90] 0.24] 4.65| 0.23] 19.4%| 1.8%
100] 0.88] 0.22) 2.27| 0.19 0.3%| 1.1%
400} -0.06] 0.19] -0.33] 0.27] -12.5%| 0.9%
pzd 1600] 0.61f 0.19] -0.80[ 0.35] -12.2% | 0.8%
6400] 1.65| 0.20] -0.18| 0.39] -9.9%| 0.7%
50] 16.47] 0.43] 30.25| 0.68] 190.9% | 4.8%
100] 8.78]| 0.40] 13.16| 0.43] 46.1% | 2.6%

=80

=10

,': % 400] 0.88[ 0.36] -2.17] 0.50] -36.2%| 1.6%
O |z 1600] 0.78] 0.36] -8.64[ 0.71] -43.0%]| 1.6%
gﬁ 6400] 4.01] 0.35] -9.07| 0.87] -37.1%]| 1.7%
100] 62.1] 35| 117 38| 30.5%| 9.29%

= 400] 11.7] 27 7] 26| -43.9%][ 4.3%

% 1600] -1.1] 1.7] -30.2[ 5.9] -80.29%| 1.8%
6400] 5.4 20| -36.7] 6.1] -90.9%| 1.4%

o 200] 163.0] 6.7] 260] 160 16% | 10%

o 400] 836 58] 171] 77] -20.1%]| 4.8%

z 1600 18] 39] -92[ 65| -78.7%]| 1.3%
6400 7.6] 271 -97.7] 9.4] -91.0%]| 1.0%

Table 1: The performance of PC* over PC and GTT
as N, is varied for N = 10 and N = 20.

be much greater than the average time 7pc to fin-
ish. This is due to the ironic fact that if the data
is small the chi-squared(X,Y | Z,Nxyz) test with a
non-smoothed table will be more likely to discover in-
dependence relations because of noise in the tables.
This in turn causes the PC algorithm to remove edges
in the network that are critical to establishing sep-
arations later in the search, causing an overall more
dense structure. Thus as the parameter n in the PC
algorithm increases, the average clique sizes in the net-
work increase, causing an exponential increase in the
number of conditioning sets to check. In these cases
the end result was that PC would get caught in an in-
tractable calculation that could not be finished in any
reasonable time. The way this is handled in practice
is that PC is set to exit whenever the conditioning
set becomes larger than some integer z, or when some
maximum time has elapsed.

We analyzed how the use of our hybrid indepen-
dence test affected the frequency of the PC algorithm
stalling. To this end, it was necessary to establish a
cutoff time 7 after which it was assumed that the PC



algorithm had stalled. The following observations al-
lowed the cutoff time to be established based on the
time t* of the PC* algorithm:

1. The PC* algorithm rarely stalled.

2. A single conditional independence test using
Hybrid-IT(X, Y | Z, D) typically took between
2 to 10 times longer than a chi-squared(X,Y |
Z,nyz) test.

3. Aside from the independence test being used, PC
and PC* are identical algorithms and were being
tested on identical data sets.

These facts allowed a reasonable cutoff time for PC
to be tied to the longer but more reliable exit time
t* of the PC* algorithm. For example, the criterion
7 = t* would not have been unreasonable since we
expect PC* to take 2-10 times longer than PC. In fact,
we used a much more conservative criterion, choosing
7 to be greater than 5 standard deviations from t*,
i.e., such that the probability P(t* <7) > 1 —1075.
This procedure made possible measurements in high
N, low N, regimes where the PC algorithm will stall
a majority of the time.

Figure 1 shows the probability of stall for both the
PC and PC* algorithms for several configurations
of {N,N,}. It is evident from this figure that the
Hybrid-IT(X, Y | Z, D) all but eliminates the prob-
ability of a stall for all tested values of N and N,.
This is sharply contrasted to the standard implemen-
tation of the chi-squared(X,Y | Z,Nxyz) test which
for large N and small NV, can achieve stall probabilities
approaching 100%.

The comparisons between PC and PC* were vul-
nerable to the criticism that the difference in KIL-
Divergence between PC and PC* might have been due
to the fact that our selected significance level o = 0.05
for some reason favored the Hybrid-IT(X, Y | Z, D)
over the standard chi-squared(X,Y | Z,Nxyz) test.
A less naive experiment would have first tuned « for
PC then separately tuned a for PC* for the compar-
isons. Thus if we just so happened to pick an « that
benefited PC* , that could explain our experimental
results.

To test this hypothesis we performed a test with
N =10, N, = 100 and with « varied over more than
three decades from 0.0001 to 0.2. If it was possible to
tune « to PC in such a way that it performed better
than PC* | then our results would be in doubt. These
results are shown in Figure 2. Figure 2(a) shows the
value of Ay; as « is varied; whereas Figure 2(b) shows
the overall KL-Divergence of PC as « is varied. It was
observed that as a was reduced to extremely small
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Figure 1: Probabilities of the PC and PC* algorithms
stalling.

values the value of Ay; began to approach zero; how-
ever, for these values of a the overall quality of PC
graphs decreased as indicated by the increasing KL di-
vergence. Conversely, as the quality of PC graphs was
tuned to its optimum value the value of Ay; achieved a
maximum. This experiment demonstrated for at least
the {N = 10, N,, = 100} configuration that the gains
in Ag; shown in Table 1 were not due to a shifting in
the optimum significance level between PC and PC* .

5 Conclusions

We have demonstrated that a Hybrid independence
test can be used along with a set of (possibly non-
informative) priors to produce more robust indepen-
dence tests. We have demonstrated empirically that
using PC* consistently decreases the KL-Divergence
of networks compared to PC, recovers structural fea-
tures more accurately and dramatically reduces the
probability of PC getting stuck on small data sets.
The improvements to PC were significant enough for
it to outperform a greedy algorithm based on Bayesian
techniques when the database is small or when the
number of nodes increases.

This technique is easy to implement: any exist-
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Figure 2: The relative performance of PC* as the sig-
nificance level « is tuned for PC. As the KL-divergence
for PC is minimized, the performance in PC* increases.
The error bars denote the one-sided 99% confidence in-
tervals.

ing CB algorithm can be modified simply by re-
placing the independence test and leaving the rest
of the algorithm untouched. The benefits of using
Hybrid-IT(X, Y | Z, D) were not without cost. Typ-
ically the time taken to learn a graph was 2 — 5 times
longer for PC* than for the PC runs that did not stall.

This test allows CB learning to be performed even
when the database is partially missing data using the
EM algorithm or MCMC methods. The ability to
learn structure with missing data opens up the pos-
sibility of using CB techniques for unsupervised classi-
fication. It is interesting to see how a CB unsupervised
classifier will perform compared to one learned using
Bayesian methods.
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