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Abstract—Analytical models to evaluate and predict “pre-
cision” performance of indoor positioning systems based on
location fingerprinting are lacking. Such models can be used
to improve the design of positioning systems, for example by
eliminating some fingerprints and reducing the size of the location
fingerprint database. In this paper, we develop a new analytical
model that employs proximity graphs for predicting performance
of indoor positioning systems based on location fingerprinting.
The model allows computation of an approximate probabil-
ity distribution of error distance given a location fingerprint
database based on received signal strength and its associated
statistics. The performance results from the simulation and the
analytical model are found to be congruent. This model also
allows us to perform analysis of the internal structure of location
fingerprints. We employ the analysis of the internal structure to
identify and eliminate unnecessary location fingerprints stored in
the database, thereby saving on computation while performing
location estimation.

I. INTRODUCTION

Location of mobile computers is essential to enable
location-aware applications in wireless pervasive computing
[1]. By utilizing location information, location-aware com-
puters can enable many location-based services (LBS) pos-
sible for mobile users. The global positioning system (GPS),
although operating well for outdoor, does not perform very
well in urban environment especially inside buildings. Con-
sequently, location fingerprinting based positioning systems
using wireless local area networks (WLANs) have been sug-
gested as a viable alternative to provide location information
for indoor areas. With no requirement of specialized hardware
modules at the mobile station (MS) nor additional spectrum
for positioning, location fingerprinting based positioning can
be deployed using current WLAN infrastructure. In addition,
the technique is relatively simple and more robust in multipath
conditions compared to techniques such as time-of-arrival
(TOA) and angle-of-arrival (AOA).

The location fingerprinting technique connects location-
dependent characteristics such as received signal strength
(RSS) from known access points to a location and uses
these characteristics to infer the location. Locations within
the entire area of interest are usually expressed as a set of
rectangular grid points. Fingerprinting based positioning is
divided into offline and online phases. In the offline phase,
by site-surveying, the RSS from multiple access points (APs)
at different grid points are collected and stored in a fingerprint

database, often called a radio map. The vector of mean RSS
values at point on the grid is called the location fingerprint of
that point [2]. In the online phase, a MS will measure a sample
fingerprint vector of RSSs from different APs at its position.
The sample fingerprint is sent to a central server in the WLAN
infrastructure. The server compares the measured fingerprint
to fingerprints stored in the radio map for determining the
location of the MS on the grid. The estimated result is then
reported back to the MS. Commonly, the Euclidean distance
between the measured sample and each fingerprint in the
radio map is computed and used for location estimation. The
grid coordinate associated with the fingerprint that yields the
smallest Euclidean distance is selected as the estimate of the
position. Other methods using Bayesian modeling [3] and
Statistical Learning [4] have been suggested to map sample
RSS vectors to the fingerprint in the radio map.

In deploying positioning systems, several performance
benchmarking metrics needed to be considered [5]. The most
fundamental metric is location accuracy, which is usually
reported as an error distance between the estimated location
and the actual MS location. Another metric is location preci-
sion, which is the percentage of successful location estimates
with a given accuracy. With 100% accuracy (error distance
= 0m), the location precision metric will correspond to the
probability of returning the correct location. Conventionally,
a large number of location fingerprints are collected from a
regular rectangular grid of locations in the given area during
the offline phase. This process can be slow and laborious.
Location fingerprints corresponding to a regular physical grid
are typically scattered and asymmetric (depending heavily
on site-specific signal propagation). The Euclidean distance
between some sets of fingerprints can be very small compared
to the variation of the RSSs at the corresponding locations.
Collecting such fingerprints with small “signal distance” in
the radio map may not improve performance and also cause
extra computational effort while estimating the location of a
MS. Including some fingerprints in the radio map may even
reduce location precision. Thus a deployment challenge is how
to efficiently collect fingerprints and construct a radio map so
that it contains only necessary location fingerprints without
sacrificing performance.

However, models to analyze and predict accuracy and
precision performance of indoor positioning systems based on
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location fingerprinting are lacking. Previous work on location
fingerprinting [2] considers the probability of returning the
correct location, but does not provide means for computing
the distribution of the error distance which is necessary to
evaluate precision and accuracy. In this paper, we develop
a new analytical model that employs proximity graphs for
predicting performance of indoor positioning systems based on
location fingerprinting. The model allows computation of an
approximate probability distribution of error distance given a
location fingerprint database based on received signal strength
and its associated statistics. The performance results from the
simulation and the analytical model are found to be congruent.
This model also allows us to perform analysis of the internal
structure of location fingerprints. We employ the analysis of
the internal structure to identify and eliminate unnecessary
location fingerprints stored in the database, thereby saving on
computation while performing location estimation.

The paper is organized as follows: Related work on indoor
positioning systems is described in Section II. Section III
discusses the previous analytical model [2] that characterizes
the Euclidean distance in signal space between the measured
sample vector and fingerprints in the radio map as random
vectors. This model is then used to determine the probability
of selecting the correct fingerprint (error distance = 0m). In
Section IV, we present a new analytical model to derive the
approximate probability distribution of the error distance based
on proximity graphs. Comparisons between the new model and
simulations are shown in Section V for (a) a simplified radio
map and (b) a real radio map based on measurement data.
Finally, discussion and conclusion of the paper are presented
in Sections VI and VII respectively.

II. RELATED WORK

In the past years, many indoor positioning systems have
been been studied and developed by the research community.
Systems can be grouped by those utilizing existing infrastruc-
ture (e.g., 802.11-compliant) and those relying on additional
hardware or technology. RADAR [6] is the first WLAN-based
positioning system that computes a MS’s location based on the
RSS from many APs. Placelab [7] is a system that depends on
information about the AP’s coordinates in a database in order
to predict location. Both systems use the mean RSS vector
at locations on a grid to represent the fingerprint. There are
variations of techniques based on the mean RSS vector that
aim to improve system performance [8][9]. Some research
works study the signal strength distributions from APs and
use probabilistic algorithms to estimate the MS’s location
[10][11]. However, the accuracy of location estimation using
the mean RSS vector (known as deterministic approach) or the
RSS distribution (known as probabilistic approach) has been
reported to be similar [9]. Where models exist, they are used to
determine performance bounds (e.g., the Cramer-Rao bound is
suggested for predicting localization performance in wireless
sensor networks [12]). They are not geared towards predicting
or testing actual system performance. None of the previous

works has developed a model for predicting performance of
an indoor positioning system with the exception of [2].

There are many positioning systems that require specialized
hardware or additional technologies. The Active Badge system
[13] uses ceiling-mounted infrared sensor detectors to detect
signals from a MS’s active badge (so that a central unit
can process the data and determine the MS’s location). The
drawback of the system is that infrared signals have a limited
range and are susceptible to interference from sunlight and
fluorescent light indoors. The Cricket system [14] uses ultra-
sound and RF receivers to derive time-of-flight information
and applies multilateration for location estimation. Despite
an accuracy of a few centimeters, many receivers must be
deployed in the system. Systems utilizing RFID-based technol-
ogy (e.g., SpotON [15] and LANDMARC [16]) have also been
studied. A hybrid system like [17] cooperates Zigbee radios, as
additional proximity sensors, and collaborative localization in
clusters to improve accuracy of the WLAN-based positioning
system.

The problem of analyzing relationships among a set of
scattered points has been studied using the concepts of Voronoi
diagram and proximity graphs. A Voronoi diagram helps deter-
mine the “closest” region to an associated point (in comparison
with other points) and it has been applied to problems in
geophysics, biology, computational geometry, and engineering
[18]. A proximity graph is a particular type of graph that
has been used to represent neighbor relationships between
such points. These concepts, although widely applied in other
fields, have never been adopted in the field of wireless indoor
positioning system. We use these concepts in our modeling
and analysis efforts.

III. INDOOR LOCATION FINGERPRINT MODEL

In this section we describe the preliminary model described
previously in [2] which is a precursor to our model. Consider
an indoor positioning system overlaid on a WLAN in a single
floor inside a building. We assume that there are N access
points (APs) in the area and they are all visible throughout
the area under consideration. A square grid is defined over
the two-dimensional floor plan and any estimate of a MS’s
location is limited to the points on this grid. Assuming that
the grid spacing results in L points along both the x and y
axes, we have L×L = L2 positions in the area. Any location
can be represented by a label (x, y) where x and y represent
the 2D coordinates on the floor. We assume zero height (i.e.,
z = 0) for all coordinates.

During the offline phase a total of K = L2 of the RSS
vectors are collected from site-survey at predetermined grid
points. All K entries are recorded in a radio map database and
each entry includes a mapping of the grid coordinate (x, y) to
the vector of corresponding RSS values from all APs in the
area. Each element in each vector in the database is assumed
to be the mean of the RSS from each of the N access points in
the area. This is typically done by collecting a large number of
samples of the RSS for different orientations of the MS, and
calculating an average value. This approach reduces variations
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due to orientation and time in the system. During the online
phase, to determine the MS’s location, a sample of the RSS
from all APs at the current position is obtained. This sample
vector is compared with all K existing entries in the database.
The fingerprint entry that has the closest match to the users
sample of RSS is used by the system as the estimate of the
user’s current location.

To derive mathematical models for predicting performance,
two vectors are used in estimating the location of the MS,
a sample vector and a fingerprint vector. The sample vector
consists of samples of the RSS measured at the MS from N
access points in the the area. The sample vector is denoted
as: R = [r1, r2, r3, ..., rN ]. Each component in the vector is
assumed to be a random variable such that:

• The random variables ri (in dBm) for all i are mutually
independent.

• The random variables ri (in dBm) are normally (or
Gaussian) distributed.

• The (sample) standard deviation of all the random vari-
ables ri is assumed to be identical and denoted by σ (in
dB).

• The mean of the random variable ri or E{ri} is denoted
as ρi (in dBm).

The fingerprint vector in the radio map consists of the means of
all the RSS random variables at a particular location from the
N access points and it is denoted as: R̃ = [ρ1, ρ2, ρ3, ..., ρN ].

The assumption that the RSS is a normally distributed
random variable is acceptable. Our previous study in [19] ob-
served that the RSS’s distribution often exhibits left-skewness
and varies according to its average value or its location. How-
ever, when the AP is far from the measurement location and
the RSS contains no direct line-of-sight, the distribution can
be closely approximated by a Gaussian distribution. Moreover,
this assumption allows tractability of the mathematical model.
Also, there is no observable relationship between the RSS
variations transmitted by different APs. Hence, the assumption
of independence is reasonable.

As discussed earlier, the “signal distance” between the
sample RSS vector and the fingerprint is used to determine
which of the points on the grid corresponds to the position of
the MS. The (x, y) coordinates corresponding to the fingerprint
that has the smallest distance from the sample RSS vector is
returned as the estimated location. This approach is sometimes
referred as the Nearest Neighbor Point in Signal Space (NNSS)
[6]. The signal distance, being different from physical distance,
is calculated by the Euclidean distance between R̃ and R and it
is given as: Z = [

∑N
i=1(ρi−ri)2]1/2. A detailed analysis of the

characteristics of the Euclidean distance metric Z for indoor
location fingerprinting can be found in [2]. For example, Z
can have either a central or non-central chi distribution.

Next we discuss the mathematical model modified from [2]
for predicting the probability of selecting the correct location
fingerprint when the grid system contains two locations and
multiple locations.

A. Probability of Selecting the Correct Location Fingerprint
from a Set of Two

Consider a grid system with two grid points, indexed as
i and k, and assume a MS is at the ith grid point. We
define the pairwise error probability (PEP) as the probability
that a sample vector Ri is closer to the fingerprint vector
R̃k than the target fingerprint vector R̃i. In fact, it is the
probability that we have an incorrect estimate of the location
(picking the kth grid point instead of the ith grid point).
Given sdik, the Euclidean signal distance between R̃i and R̃k,
we can compute the pairwise error probability PEP (R̃i, R̃k)
between the target (correct) fingerprint vector R̃i and another
(incorrect) fingerprint vector R̃k as follows:

PEP (R̃i, R̃k) = P{Ri is closer to R̃k than R̃i}
= P{||R̃k −Ri|| < ||R̃i −Ri||}

=

x=∞∫
x=

sdik
2

1√
2πσ2

e(−x2

2σ2 ) dx

= Q(
sdik

2σ
). (1)

||.|| denotes the magnitude (i.e., Euclidean distance) of an RSS
vector. Q(x) represents the right-tail probability for a standard
Gaussian random variable where the random variable exceeds
x. Note that PEP (R̃i, R̃k) = PEP (R̃k, R̃i) (i.e., the MS is
at the kth grid point, but its location is estimated to be the ith

grid point).
The chance of the event that the distance between the

sample RSS vector Ri and the correct location fingerprint R̃i

is smaller than the distance between the sample RSS vector
Ri and the incorrect neighboring location fingerprint R̃k is
recognized as the probability of returning the correct location.
When considering only two location fingerprints, the pairwise
probability of returning the correct location or pairwise correct
probability (PCP) between the correct fingerprint vector R̃i

and an incorrect fingerprint vector R̃k can be computed as:

PCP (R̃i, R̃k) = 1− PEP (R̃i, R̃k) = 1−Q(
sdik

2σ
). (2)

B. Probability of Selecting the Correct Location Fingerprint
from a Set of Many

In a positioning system, the radio map database contains
several location entries and fingerprints. To find the probability
of returning a correct location, the joint probability density
function (PDF) of the location fingerprints needs to be known.
Let Ck = ||R̃i − Ri|| − ||R̃k − Ri|| be the comparison
variable. The variable Ck compares the distance between the
sample RSS vector and the correct fingerprint R̃i and the
corresponding distance to the incorrect fingerprint R̃k. The
index k runs from 1 to K excluding the correct location index
(the index i in this case). So, the probability of correct decision
is described by:

Prob{Correct Decision} = Pc

= P {C1 ≤ 0, · · · , Ci−1 ≤ 0, Ci+1 ≤ 0, · · · , CK ≤ 0} (3)
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Unfortunately, deriving such a probability analytically
proves to be difficult and may not be practical when there
is a large number of location fingerprints in the database.
The model in [2] applies a simple approximation that assumes
independence among the many different comparison variables.
So

Prob{Correct Decision} = Pc =
K∏

k=1
k 6=i

Pr{Ck ≤ 0}

Prob{Erroneous Decision} = Pe = 1− Pc. (4)

This simple model yields a reasonable estimation for the
probability of selecting the correct location. However, the
above analytical model is not sufficient to find the probability
distribution of the error distance. To obtain the distribution of
the error distance, we need an estimate of the probability of
selecting an arbitrary location (and then associating it with
the corresponding error in physical distance). Further, we
want to find the chance of picking one location against other
locations in order to determine the “level of importance” of a
corresponding fingerprint in terms of how it impacts the prob-
ability of returning the correct location. In fact, the internal
structure or distance relationships among location fingerprints
has a direct impact on the performance of the positioning
system. Although seemingly unique, each fingerprint will have
different influence level in terms of the chance of selecting
the fingerprint and thus the distance error in the estimated
location. Therefore, understanding the fingerprint structure
that dictates both a decision region and the probability of
fingerprint selection is critical to the design of a good wireless
positioning system.

In the next section, we will discuss an extended analytical
model that considers fingerprint structure in order to better
model the probability distribution of fingerprint selection and
thus the distance error.
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Fig. 1. Voronoi Diagram of 9 Fingerprints with DG

IV. ANALYTICAL MODEL FOR PROBABILITY
DISTRIBUTION OF PICKING FINGERPRINTS

Toward the above mentioned goal, in this section we
introduce useful tools. They are the Voronoi diagram and
different proximity graphs. The Voronoi diagram is a tool
introduced to find “decision regions” for each fingerprint in
the system (explained below). A proximity graph is a tool
that helps analyze the fingerprint structure and yield proximity
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Fig. 2. Voronoi Diagram of 9 Fingerprints with GG
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Fig. 3. Voronoi Diagram of 9 Fingerprints with RNG

information or a “neighbor set” of a given fingerprint. A
neighbor is a fingerprint that is believed to be more important
to the precision of selecting the target fingerprint, i.e., one
that is “relatively close” to the target fingerprint in signal
space. Applying these tools, we create a mathematical model
for approximating the probability distribution of fingerprint
selection.

A. Voronoi Diagram for the Location Fingerprint

The Voronoi diagram of a set of fingerprints FP =
{R̃1, R̃2, · · · , R̃K} is defined as a division of the space
according to the nearest-neighbor rules, where each fingerprint
from FP is associated with a region of the Euclidean space
closest to a given fingerprint from FP . Such a region is
called a Voronoi region (or a decision region) for a fingerprint.
From the definition, the Voronoi region of a fingerprint R̃i

in N -dimensional Euclidean space (N access points) can be
expressed as:

V (R̃i) = {R : ||R̃i −R|| ≤ ||R̃j −R||, for ∀j 6= i}.

Combining the Voronoi regions of all the fingerprints yields
the Voronoi diagram for the radio map. Alternatively, the
Voronoi diagram can be defined by a bisector B(R̃i, R̃j) =
{R : ||R̃i−R|| = ||R̃j−R||} between two fingerprints R̃i and
R̃j . The bisector is a line perpendicular to the line segment
R̃iR̃j that bisects this segment in Euclidean 2D space. It is
a plane (hyperplane) perpendicular to the segment R̃iR̃j that
bisects this segment in 3D (higher-D). The Voronoi diagram
is created using bisectors between any two fingerprints to
derive decision regions for all fingerprints in the radio map.
A bisector is also referred as a Voronoi edge. Fig. 1 shows
an example of a Voronoi Diagram (red dashed lines) for 9
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fingerprints in 2D space. If a sample RSS vector falls in
the Voronoi region of a fingerprint R̃m, it is closest to that
fingerprint in terms of Euclidean distance. Thus, the NNSS
approach will pick R̃m (or decide that location on the grid
corresponding to R̃m is the correct location). The Voronoi
regions can be used to determine the probability of picking
a particular fingerprint given the statistics of the random
RSS vector. The method of doing this is to determine the
probability that the RSS vector falls in the Voronoi region. This
is mathematically tractable for rectangular Voronoi regions, but
not so for irregular polygonal Voronoi regions. Instead, we use
the related concept of proximity graphs to approximate this
probability.

B. Proximity Structure and Proximity Graphs

We use the idea of proximity graphs to extract structure
information (especially proximity information such as a
neighbor set) for fingerprints. Two fingerprints are “close
together” and they are neighbors if there are no other
fingerprints in a certain “forbidden region” defined differently
by different proximity graphs. We consider three proximity
graphs; the Deluanay graph (DG), the Gabriel graph (GG),
and the relative neighborhood graph (RNG). Here only a
brief description for each graph is provided. More details
and constructing algorithms for these graphs can be found in
most references on geometric graph theory [18].
DG: DG is defined based on the Voronoi diagram through
the principle of duality. In the graph, there exists a Delaunay
edge between two points u, v if they share the same Voronoi
edge as boundary. This graph is referred to as Delaunay
triangulation.
GG: GG is a graph that contains a Gabriel edge between
two points u, v – if a diametral circle from these
two points contains no other point w. Mathematically,
sd2

uv ≤ sd2
uw + sd2

vw. In fact, a Gabriel edge is a Delaunay
edge that actually cuts across a Voronoi edge in the Voronoi
diagram.
RNG: RNG is a graph that contains an edge between
two points u, v – if there is no other point w that is
simultaneously closer to both points than they are to one
another. Mathematically, sduv ≤ max[sduw, sdvw].

DG, GG, and RNG are shown by solid line graphs in Figs.
1, 2, and 3 respectively. Note that RNG⊂GG⊂DG. From the
particular proximity graph, we define a neighbor fingerprint
as a fingerprint point that has edge connected to a given
fingerprint. For example, in DG a neighbor fingerprint is one
that has a Delaunay edge connected to a given fingerprint
(from Fig. 1, neighbors of fingerprint R̃6 are fingerprint
R̃2,R̃3,R̃5,R̃7, and R̃9). The same idea is applied for defining
neighbors with GG and RNG.

Different proximity graphs can yield different sets of neigh-
bors. A good graph (in our case) must give us the right set
of neighbors such that they represent the top candidates for
location fingerprint selection (given the location of a MS).
Note that the DG yields the largest set of neighbors while an

RNG yields the smallest set of the three graphs. The way we
employ proximity graphs is described in the next subsection.

C. Approximate Probability Distribution using Proximity
Graphs

As mentioned in III-B, to find the exact probability of
selecting a fingerprint and thus a location on the grid, the joint
probability density function (PDF) of fingerprints is needed.
A mathematical expression for such a function is very difficult
to derive. Moreover, we simply wish to find the probability of
selecting one fingerprint against others in order to evaluate the
influence level of a fingerprint on the probability of correctly
selecting a fingerprint. Given a MS at the ith grid point, the
probability of selecting fingeprint R̃k is approximated using a
new model as follows:

Prob{Selecting Fingerprint R̃k} = PEP (R̃i, R̃k)×∏
j∈neighbor of i

PCP (R̃k, R̃j). (5)

The idea behind this equation is as follows. Instead of using
all of the comparison variables Ck as in (4), we use only
the neighbors as the most significant candidates – and still
use an independence assumption. Given that the MS is at
grid point i, it is the probability of selecting R̃k and not R̃i,
AND the probability of selecting R̃k and not any of the other
neighbors of R̃i. That is, the above approximation weighs
the PEP (R̃i, R̃k) with all PCP s between fingerprint R̃k

and only “neighbors” (as defined by the proximity graphs)
of the correct fingerprint R̃i. The influence from remote
fingerprints is ignored by using this approach. The set of
neighbors to be employed in the approximation depends on
the choice of the proximity graph. Moreover, this approach
allows us to compute the probability of not only picking the
correct location, but also the probability of picking any of
the neighbors in the set. However, fingerprints outside the
neighbor set are assumed to be never picked (although there is
always a negligible probability that this may happen). To find
the probability of selecting the correct fingerprint, the first line
in (4) can be used. However, instead of using all K fingerprints
we use only the neighbor set of the correct fingerprint in the
computation, for better estimation (a claim that is validated by
our results in section V).

V. PERFORMANCE EVALUATION

In this section, we evaluate the analytical model discussed
in section IV. We study the results of the probability of
fingerprint selection (for correct and incorrect fingerprints). We
then look at the results of the distribution of the probability of
fingerprint selection. The distribution of the error distance of
the location estimate is also studied. We do this for a simple
system model described below as well as for a real radio map
derived from measurement.
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Fig. 4. 25 Grid points for an indoor positioning system

A. System Model

The system model considered for evaluation is as follows.
We use a 25 grid point system (see Fig. 4) with a grid spacing
of 1 meter (≈ 3 feet). We place access points along the outer
most positions (small dark rectangles in Fig. 4). Initially we
consider only two access points: AP1 = (0,0) and AP8 = (1,6).
The position of the mobile station could be at any one of the
25 locations in Fig. 4. Suppose the physical distance of the
kth grid point from the jth AP is dj,k meters. The mean or
expected value of rj for the grid point is calculated from the
mean path loss given by:

Pl(dj,k) = Pl(d0) + 10.α. log10(dj,k). (6)

Here Pl(d0) is the free-space loss at the reference distance of
d0 = 1 m (i.e., 54.13 dBm for line-of-sight propagation (LOS)
and 37.3 dBm for non-line-of-sight propagation (NLOS) as
reported in some measurements [20]). The variable α denotes
the path loss exponent, which for indoor locations could be
between 1-6 [21]. The mean received signal strength E{rj}
can be computed using:

E{rj} = ρj = Pt − Pl(dj,k) (7)

where Pt is the transmit power of the access point which
we will fix at 15 dBm for IEEE 802.11b based WLANs.
The standard deviation of the RSS for this indoor positioning
system is assumed to be σ = 4 dB as reported in [22]. Other
values of σ for indoor location systems are reported in [23].
A more accurate path loss prediction model, such as those
including wall and floor attenuation factors suggested in [6],
could also be used. The path loss equation only provides us
with the mean received signal strength value. It is possible to
use values from actual measurements as well without changing
our analytical model.

Table I shows the database of location fingerprints when
access point AP1, AP4, AP8, and AP12 in Fig. 4 are deployed.
The table contains the location fingerprints of locations 7-
9, 12-14,and 17-19, which are located around the center of
the system. Note that if only one access point is present, the
fingerprints, as listed in the second column, may not be unique.
This happens when two points on the location grid are at

TABLE I
EXAMPLE RADIO MAP

Access Points AP1 (dBm) AP4 (dBm) AP8 (dBm) AP12 (dBm)
Coordinate (0,0) (0,3) (1,6) (5,6)
Loc7(2,2) -57.1918 -53.1094 -63.7390 -67.0888
Loc8(2,3) -61.4089 -51.1712 -59.1300 -64.2355
Loc9(2,4) -65.1506 -53.1094 -53.1094 -61.4089
Loc12(3,2) -61.4089 -59.1300 -65.1506 -65.1506
Loc13(3,3) -64.2355 -58.2149 -61.4089 -61.4089
Loc14(3,4) -67.0888 -59.1300 -57.1918 -57.1918
Loc17(4,2) -65.1506 -63.7390 -67.0888 -63.7390
Loc18(4,3) -67.0888 -63.2124 -64.2355 -59.1300
Loc19(4,4) -69.2330 -63.7390 -61.4089 -53.1094
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Fig. 5. Voronoi Diagram and GG of 25 Location Fingerprints

the same distance from the access point. Additional access
points make the fingerprint unique. An example of a Voronoi
diagram of the 25 location fingerprints when AP1 and AP8
are deployed, along with its GG, is shown in Fig. 5. Note
that, although a symmetric square physical location grid is
used, the resulting fingerprints are not necessary symmetric
in signal space. Fingerprints (R̃21 − R̃25) that are far from
an AP tend to stay closer while fingerprints closer to the APs
(R̃1−R̃5) tend to be apart in signal space. The decision regions
for fingerprints are also different in shape and size. Bounded
(unbounded) regions are found at inner (outer) grid points.

Next, we compare the results from simulation and the
analytical model. We simulated 10,000 RSS samples from
a given MS location and applied the nearest neighbor com-
putation to estimate its location. Then we computed relevant
performance metrics (i.e., error probabilities, error distances)
from simulations.

B. Results of Error Probability of Fingerprint Selection

We first study the precision at zero-meter accuracy in terms
of the probability of error of fingerprint selection (Pe – the
probability of not picking the correct fingerprint). In particular,
the impact of the standard deviation σ of RSS on Pe is
considered. We choose the grid point 13, in Fig. 4, as the
MS’s actual location (it is at the center of our grid system).

105

Authorized licensed use limited to: University of Pittsburgh. Downloaded on January 27, 2009 at 17:01 from IEEE Xplore.  Restrictions apply.



0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard deviation of Gaussian RSS (σ) (dB)

Er
ro

r P
ro

ba
bi

lit
y 

of
 F

in
ge

rp
rin

t S
el

ec
tio

n
Loc13 Performance with varying standard deviation (σ), α = 4

Sim
Ana:all-nb
Ana: dg-nb, gg-nb
Ana: rng-nb

Fig. 6. Impact of the standard deviation on error probability

We consider the standard deviation σ between 1-7 dB which
corresponds to values seen in extensive experiment results
[24]. The results from both simulation and the analytical model
are given in Fig. 6.

In the case of the analytical results, we consider different ap-
proximations depending on the number of fingerprints involved
in the probability estimation. First, we select all the other 24
fingerprints (Ana:all-nb) to compute the probability of error as
given in (4). Second, we use only the neighbor set (Ana:dg-
nb, gg-nb, rng-nb) derived from the different proximity graphs
to estimate the probability value. Clearly, when the standard
deviation σ increases, the error probability also increases.
The error probability estimation using Delaunay neighbors
shows the closest results to the simulation. The same result
is obtained by using Gabriel neighbors because both graphs
yield the same neighbor set for the grid point 13. In Ana:all-nb,
remote fingerprints (those that are far away from the correct
fingerprint in signal space) are included in the comparison
variables [Pr{Ck ≤ 0}] in (4). Since such probabilities are
multiplied assuming independence, the probability of correct
decision decreases and the error probability increases, thereby
giving higher results compared to simulations. Note that the
random variables Ck are not really independent. On the other
hand, using the relative neighborhood graph [Ana:rng-nb]
gives a lower probability of error compared to simulation
since it underestimates the number of significant neighbor
fingerprints used in the approximation.

TABLE II
COMPARISON OF ERROR PROBABILITY, σ = 4

APs Sim Anal: all-nb Anal: dg-nb Anal: gg-nb Anal: rng-nb
2 0.8334 0.9849 0.8176 0.8176 0.6631
3 0.7603 0.9409 0.8592 0.7891 0.6830
4 0.6337 0.8285 0.7770 0.6792 0.5759
5 0.5278 0.7111 0.6677 0.5815 0.4890

Table II summarizes the comparison of the error probability
for estimating location 13 when the number of access points in
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Fig. 7. Probability Distribution of Fingerprint Selection

the system increases. We study different cases when we deploy
2 APs (AP1-AP8), 3 APs(AP1-AP8-AP12), 4 APs(AP1-AP4-
AP8-AP12), and 5 APs(AP1-AP4-AP8-AP10-AP12) in the
system. Here, we assume the same standard deviation of
RSS (σ = 4 dB) from all APs. As expected, increasing the
number of APs will reduce the error probability. We can see
that Ana:all-nb provides a poor upper bound approximation
compared to simulation results. The Ana:dg-nb and Ana:rng-
nb provide better upper and lower bounds as the number of
APs increases. The Ana:gg-nb is the closest to the simulation
results. The neighbor set derived from GG reflects fingerprints
that have a better chance to be picked outside of the correct
fingerprint. We also did an extensive study by locating the MS
at different locations with different combinations of the APs.
It turned out that similar results were observed. From this, we
conclude that using the neighbor set derived from a Gabriel
Graph makes the most sense in estimating the probability of
error.

C. Results of Probability Distribution of Fingerprint Selection

Next we evaluate our analytical model to see how well it
approximates the probability distribution of picking specific
locations given the MS is at one grid point, as discussed
in IV-C. Fig. 7 shows examples for the comparison of the
distributions between the analytical model using GG and
simulations, when the MS is located at location 4 and 9
respectively. Here we assume that σ = 4 as before. Note
that the results from the analytical model are found to be
close to the simulation results in both cases. We also found
that using DG and RNG give relatively close results to the
simulation with only small differences in shape and height of
the histograms, but the GG is the best. We considered several
different MS’s locations – in each case the analytical model
gives distributions that are close to those from simulation.

As it provides reasonable estimates for the probability
distribution, the analytical model can now be used to find
some fingerprints that, if retained in a radio map, can degrade
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the overall performance of the location estimation. Those fin-
gerprints also cause inefficient nearest neighbor computation
during the online phase with a complexity of O(n∗D), where
n is the cardinality or number of the location fingerprints and
D is dimensionality (number of RSSs from the APs) in the
fingerprint system. To give an example, let consider all the
analytical results in Fig. 7. We can see that, when the MS is at
a grid location 4, the probability of selecting the grid location
4 (0.512) is a lot higher than the next highest probability of
selecting a different grid location (location 9 with probability
0.328). However, when the MS is located at the grid location
9, the two highest probability values are almost equal (0.206
for location 4 and 0.257 for location 9). This means that
retaining the fingerprint at the grid location 9 in the radio
map results in the system having a relatively high chance of
falsely returning the grid location 4 as a correct location of
the MS. In fact, the simulation results in the figure report that
the system picks the grid location 4 as the correct location
more often than the actual grid location 9 (0.274 over 0.175).
Therefore, this suggests that we should not include location 9’s
fingerprint (R̃9), and it should be eliminated from the database.
If possible, such locations must be avoided in the laborious
offline phase as well.

The fingerprint elimination procedure is described below:

1) Compute all prob. distributions of all locations L1
2) For each L1’s distribution:

- If prob{picking L1} is not the highest, eliminate L1
- If there exists L2 where |prob{picking L1} − prob{
{picking L2}| < threshold,

- Check L2’s distribution. Eliminate L1 if prob{picking
L2} is the highest& it differs from prob{picking L1} >
threshold

We can repeat this procedure for probability distributions
associated with different MS grid locations and determine
which fingerprints should be removed from the radio map.
A threshold value of 0.2 is chosen in this work based on trial
and error.

Fingerprint elimination procedures are effective and make
sense when the positioning system is deployed in a large area
such as entire floor of a building where hundreds of grid
locations are present. Fewer numbers of fingerprints in the
database mean smaller numbers of comparisons needed during

the online phase. From an extensive (analytical) evaluation,
in our system of 25 fingerprints, we can identify four more
fingerprints (R̃17,R̃19,R̃22,R̃24) that should be eliminated. By
doing so, we can save about 5/25 = 20% of computation
required for nearest neighbor search during the online phase.

The probability distribution of fingerprint selection can be
represented in terms of physical distance error as well (which
is necessary for determining precision). Fig. 8 gives an exam-
ple of the distribution plot of error distance in meters when the
MS is at grid location 4. As expected, the probability decreases
when error distance increases. Again, the distributions from
simulation and analysis, though not perfectly precise, are close.
Note that the probabilities from analysis do not add to one,
since they are determined using an approximation that assumes
independence between comparisons of random variables.

A question that arises is how eliminating certain fingerprints
impacts performance. In Fig. 9, the cumulative probability
distribution of the error distance in meters, with and without
elimination of fingerprints from the radio map, are shown. The
results are averaged based on simulations from all 25 locations.
Again, we keep σ = 4. We can see that, after eliminating
some fingerprints (R̃9, R̃17, R̃19, R̃22, R̃24), the cumulative
distribution is only slightly different compared to the case
where all fingerprints are kept in the system. The difference
in the distributions occurs only in the first few meters of error
and then diminishes as the error distance increases. Note that,
there is about a 70 % chance that the system still maintains
the distance error within 1 m after fingerprint elimination and
it is close to the case when all fingerprints are used. Therefore,
by applying fingerprint elimination, we do not lose much in
terms of precision (probability), and yet maintain acceptable
accuracy (error distance).
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D. Results with Fingerprint Measurement

We apply the analytical model and fingerprint elimination
technique as discussed in V-C to a radio map from past mea-
surements [24]. Unlike the simple model used for evaluation,
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the measured fingerprints have different σ’s for different APs
and locations. Therefore, instead of using (1), we approximate
the new PEP by:

PEP (R̃i, R̃k) = Q(
sd2

ik

2[
∑N

j=1 β2
ijσ

2
ij ]1/2

). (8)

The above equation is a modification – in the form of a
PEP – of the derivation based on a sum of multiple Gaussian
variables in [2] with different σij . βij = ρij − ρkj (difference
of R̃i and R̃k at the jth AP of fingerprint) and σij is the
standard deviation of the RSS from the jth AP at the ith

location. The new PEP is then used in (5) to approximate the
probability distribution.

The radio map measurement was conducted in an office
environment on the 4th floor of the Information Sciences
(IS) building as shown in Fig. 10. The measurement setup
consists of a grid area of 25 locations where 20 locations are
inside room 410 and 5 locations are along the corridor. The
grid spacing is approximately 1 meter. The figure also shows
locations of nearby APs that can be detected at grid locations.
The same location labels as in the simple model are used.

Fingerprints are based on the 2 APs named SIS410 and
SIS501. The fingerprints are shown in Fig. 11 with their
Voronoi regions and GG. By applying the analytical model
with the Gabriel Graph, the probability distributions of picking
a locations given the MS’s location are approximated. Pairwise
comparisons are used for fingerprint elimination. It turned out
that we can identify 9 fingerprints that can be eliminated.
Fig. 12 shows the average CDF of the error distance from
simulations. The same assumptions as in Section III were used
in the simulations, except with different σ’s for the RSS values.
We can see a minimally different CDF when we eliminate
fingerprints. This result indicates that we can sacrifice little
performance but save 9/25 = 36% by reducing the search space
in the online phase.
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VI. APPLICATION TO OFFLINE PHASE

Identifying and eliminating unnecessary fingerprints from a
radio map database can reduce computational time spent in
the online phase for fingerprinting based positioning systems.
However, collecting fingerprints from all predefined grid loca-
tions in space during the offline phase proves to be very tedious
and time-consuming. System designers lack hints that could
help them cleverly pick locations from a site-survey during
the offline phase. By studying the actual measurement data
combined with the simple analytical results, we come up with
a few tips that we think can be handy during pre-deployment
of the system.

From the measured characteristics of the RSS, the σ of
the RSS can vary from one location to another and from
one AP to another. In [24], it was found that the standard
deviation of the RSS is large (6-7 dB) when the MS is
located near the AP with a strong RSS (-60 dBm to -40
dBm). These locations usually see a direct line of sight (LOS)
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of the received signal between the AP and the MS. On the
contrary, the standard deviation is small (1-2 dB) when the
MS is located far from the AP with weak RSS (-95 dBm
to -85 dBm). Such locations often have non line-of-sight
(NLOS) of the received signal between the AP and the MS.
With large deviation of the signal, the error probability of
fingerprint selection is high. We believe that an “inefficient”
fingerprint (one that is hardly picked as a correct location)
is likely to be gathered at a location close to the AP. In
other words, observing a cluster of locations with a large RSS
vector’s magnitude will likely contain a lot of “inefficient”
fingerprints. Hence, a small grid spacing should not be used at
such locations during the offline site surveying. Using a larger
granularity of a grid spacing in the locations with a strong
RSS vector could save on labor while potentially keeping
acceptable performance. In addition, as reported in [22], large
standard deviations are found inside large and open space
buildings, while small standard deviations are found inside
small and closed spaces. So, the designer should expect to see
many inefficient fingerprints when deploying systems inside
open space areas. As a consequence, they must carefully select,
for example, a sparser grid spacing in open environments as
compared to cluttered environments. It is still necessary to
require trial-and-error of measurements before determining
grid points with “good” fingerprints at this stage. We are
looking at carefully evaluating some possibilities (such as the
impact of different standard deviations at different locations
and scalability issue of location fingerprint elimination) toward
more efficient location fingerprinting. This is a part of our
ongoing research study.

VII. CONCLUSION

In this paper a new analytical model for estimating the
probability distribution of fingerprint selection in an indoor
positioning systems using WLANs and location fingerprinting
has been proposed. The analysis and simulation results have
been compared. Both results are harmonious for a variety
of system parameters. The analytical model allows a system
designer to reduce the search database in the online phase and
some hints for fingerprint collection in the offline phase.
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