Optimization Background for Network Design

David Tipper Associate Professor

Graduate Telecommunications and Networking Program
University of Pittsburgh

tipper@tele.pitt.edu

Slides 5 http://www.sis.pitt.edu/~dtipper/2110.html

Optimization Review

- Algorithms for Logical Layer Design
 - (Graph Theory, Optimization)
- Optimization Techniques
 - Seek to find best (maximum or minimum) solution as determined by an *objective function* f(X)
 - Set of unknown decision variables X
 - Constraints limit the possible values for the variables
 - Feasible space is the set of solutions that satisfy the constraints

$$\min_{X} f(X)$$

subject to $X \in A$

- Definition
 - "A Mathematical Programming Model is a mathematical decision model for planning (programming) decisions that optimize an objective function and satisfy limitations imposed by mathematical constraints." **1

**1 T.W. Knowles, Management Science: Building and Using Models, Irwin, 1989.

Types of Optimization Problems Optimization Nondifferentiable Optimization Nonlinearly Constrained Squares Network Stochastic Programming Nonlinear Equations Constrained Integer Programming Unconstrained Discrete Continuous **Optimization** Telcom 2110 3

Constrained Optimization

• General Symbolic Model

... where $x_1, x_2 ... x_n$ are the **decision variables**

- Solution methods
 - •brute-force, analytical and heuristic solutions
 - ·linear/integer/convex programming

Mathematical Programming

- Types of Mathematical Programs:
 - Linear Programs (LP): the objective and constraint functions are linear and the decision variables are continuous.
 - Integer (Linear) Programs (ILP): one or more of the decision variables are restricted to integer values only and the functions are linear.
 - Pure IP: all decision variables are integer.
 - Mixed IP (MIP): some decision variables are integer, others are continuous.
 - 1/0 MIP: some or all decision variables are further restricted to be valued either "1" or "0" that is Binary Variables.
 - Nonlinear Programs: one or more of the functions is not linear.

Telcom 2110 5

Linear Programming

· General Symbolic Form

$$\begin{array}{lll} \text{Maximize:} & c_1x_1 + c_2x_2 + \dots c_nx_n & \Big \} & \text{Objective} \\ \\ \text{Subject to:} & a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n & \big \{ \leq, \geq, = \big \} & b_1 \\ & a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & \big \{ \leq, \geq, = \big \} & b_2 \\ & \vdots & \\ & a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n & \big \{ \leq, \geq, = \big \} & b_m \\ \\ & 0 \leq x_j, \quad j = 1, \dots, n & \Big \} & \text{Bounds} \end{array}$$

... where a_{ij}, b_{j}, c_{j} are the model *parameters*.

Linear Programming

• Can be written in matrix formulation

Maximize: $c^T x$ } Objective Subject to: Ax = b } Constraints $0 \le x_j \quad \forall j$ } Bounds

...where c, A, b are parameters

Telcom 2110 7

Linear Programming

- General Restrictions
 - All decision variables must be nonnegative $x_i \ge 0$.
 - Constant terms cannot appear on the LHS of a constraint.
 - No variable can appear on the RHS of a constraint.
 - No variable can appear more than once in a function, i.e. objective or constraint.
- Steps for Formulating LP Models
 - Construct a verbal model.
 - Define the decision variables.
 - Construct the math model.
- Feasible solution set of all points satisfying all constraints and sign restrictions

Optimal solution to an LP – a point in the feasible region with the best objective function value

Formulating LP Problems

- An example**2
 - A steel company must decide how to allocate production time on a rolling mill. The mill takes unfinished slabs of steel as input and can produce either of two products: bands and coils.
 The products come off the mill at different rates and also have different profit-abilities:

	Tons/hour	Profit/ton
Bands	200	\$25
Coils	140	\$30

 The weekly production that can be justified based on current and forecast orders are:

Maximum tons: Bands 6,000 Coils 4.000

**2 from, R. Fourer, D. Gay, B. Kernighan, AMPL, Boyd & Fraser, 1993, pp. 2-10.

Telcom 2110 9

Formulating LP Problems

- Example (cont'd)
 - The question facing the company is: If 40 hours of production time are available, how many tons of bands and coils should be produced to bring in the greatest total profit?
- Constructing the Verbal model
 - Put the objective and constraints into words.
 - For constraints, use the form

{a verbal description of the LHS} {a relationship} {an RHS constant}

Maximize: total profit

Subject to: total number of production hours ≤ 40

tons of bands produced \leq 6,000 tons of coils produced \leq 4,000

Formulating LP Problems

- Definine the Decision Variables
 - $-X_B$ number of tons of bands produced.
 - X_C number of tons of coils produced.
- Construct the Symbolic Model

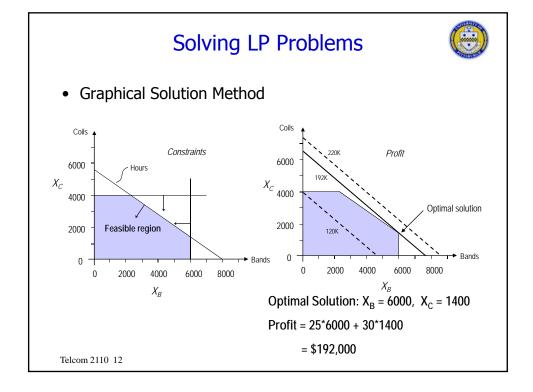
Maximize:
$$25X_B + 30X_C$$

Subject to:
$$(1/200)X_B + (1/140)X_C \le 40$$

$$0 \le X_{\scriptscriptstyle B} \le 6000$$

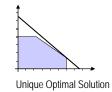
$$0 \le X_C \le 4000$$

For a Two variable problem can solve graphically by ploting constraints and objective function

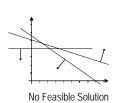


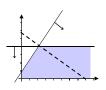
Solving LP Problems

• 4 Possible Outcomes



Multiple Optimal Solutions





Unbounded Optimal Solution

Telcom 2110 13

Example 2

$$\begin{aligned} \textit{Maximize} \ Z &= 10 \ X_{I} + 4 \ X_{2} \\ \textit{Subject to} \end{aligned}$$

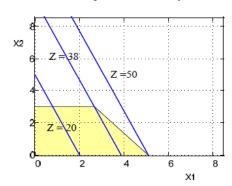
subject to
$$5X_1 + 4X_2 \leq 25$$

$$X_2 \leq 3$$

$$X_1 \geq 0, \quad X_2 \geq 0$$

The feasible solution space is the area shaded in the figure below.

The optimal solution is x1 = 5 and x2 = 0, which gives the maximum objective value z = 50.



Solving Linear Programs

In general problem is too complex for graphical solution

- · Simplex method
 - Efficient algorithm to solve LP problems by performing matrix operations on the LP Tableau
 - Developed by George **Dantzig** (1947)
 - Can be used to solve hand
 - Equivalent to

small LP problems by checking corner points

 \mathbf{x}_2

Telcom 2110 15

Linear Program in Standard Form

indices

- j=1,2,...,n

-i=1,2,...,m

constants

 $- c = (c_1, c_2, ..., c_n)$ - $b = (b_1, b_2, ..., b_m)$

 $-A=(a_{ii})$

variables

 $- x = (x_1, x_2,...,x_n)$

variables equality constraints

cost coefficients

constraint left-hand-sides

 $m \times n$ matrix of constraint coefficients

Linear program

maximize

First put in standard form

- $z = \Sigma_{j=1,2,...,n} c_j x_j$
- subject to

i=1,2,...,m $\Sigma_{i=1,2,...,n} a_{ij} x_i = b_i ,$ $x_j \ge 0$, j=1,2,...,n

Linear program (matrix form)

maximize

СХ

n > m

subject to

 $rank(\mathbf{A}) = m$

Ax = b

 $\boldsymbol{x} \geq \boldsymbol{0}$

Simplex Method

Slack Variables

add a slack variable x_{n+i} to make constraint an equality

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \quad change \ to \quad \sum_{j=1}^{n} a_{ij} x_{j} + x_{n+i} = b_{i} \ , \ x_{n+i} \ge 0$$

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad change \quad to \quad \sum_{j=1}^{n} a_{ij} x_j - x_{n+i} = b_i , \quad x_{n+i} \ge 0$$

• Nonnegative unconstrained Variables

$$x_n$$
 unconstrained $x_n - x_{n+i} + x_{n+i+1} = 0$ $x_{n+i} \ge 0$, $x_{n+i+1} \ge 0$

Exercise: transform the following LP to the standard form

Maximize: $z = x_1 + x_2$ **subject to** $2x_1 + 3x_2 \le 6$

 $x_1 + 7x_2 \ge 4$

 $x_1 + x_2 = 3$

 $x_1 \ge 0$, $x_2 \ge 0$

Telcom 2110 17

Simplex Method

Exercise: transform the following LP to the standard form

Maximize: $z = x_1 + x_2$ subject to

$$2x_1 + 3x_2 + x_3 = 6$$

$$x_1 + 7x_2 - x_4 = 4$$

$$x_1 + x_2 = 3$$

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_3 \ge 0$, $x_4 \ge 0$

Some software tools require converting max to min by multiplying by -1

For example Min - z is same as Max z, that is

Min $-x_1 - x_2$ is the same as Max above

Simplex Method

- After LP is in standard form
- Find a basic feasible solution (maybe slack variable with base variable set to zero), move from corner to corner via swapping columns and eliminating slack variables.
- Algorithm
 - 1. Find a basic feasible solution and form tableau
 - 2. Repeat
 - 1. If all coefficients in objective row \Rightarrow 0 stop
 - 2. Else, pick column with most negative coefficient
 - 3. Pick row with least positive ratio of rhs/(column value)
 - 4. Normalize Row so pivot value =one
 - 5. Use Gaussian elimination to remove make rest of column zero

Telcom 2110 19

LP Example

- Two types of leather belts: deluxe and regular, each requires 1 sq. yard of leather
- Each week: only 40 sq yard leather & 60 hrs of labor skill available
- Regular belt: 1 hr labor -> \$3 profit
 Deluxe belt: 2 hr labor -> \$4 profit
- Variable: x₁ = # deluxe belts produced/wk
 x₂ = # regular belts produced/wk
- LP: maximize profit z = 4x₁ + 3x₂

s.t.
$$x_1 + x_2 \le 40$$

 $2x_1 + x_2 \le 60$
 $x_1, x_2 \ge 0$

Simplex method for standard Max problem

• From previous problem:

maximize profit $z = 4x_1 + 3x_2$ subject to $x_1 + x_2 \le 40$ $2x_1 + x_2 \le 60$ $x_1, x_2 \ge 0$

- Step1: Convert LP to standard form
 - Add slack variable to each inequality constraint
 - Turn constraints to equations

s.t.
$$\begin{aligned} z - 4x_1 - 3x_2 &= 0 \\ x_1 + x_2 + x_3 &= 40 \\ 2x_1 + x_2 &+ x_4 &= 60 \end{aligned}$$

Telcom 2110 21

Simplex method for standard Max problem

- Step2: Write down the simplex tableau
 - Start with NBV = $\{x1, x2\}$ and BV = $\{z, x3, x4\}$

Z	x1	x2	х3	x4	rhs	BV
1	-4	-3	0	0	0	z = 0
0	1	1	1	0	40	$x_3 = 40$
0	2	1	0	1	60	$x_4 = 60$

- Step3: Choose entering variable and do test ratio
 - entering variable: x1 (increase x1 one unit -> z increases 4 units)
 - Pivot row: row2

	<u>Z</u>	ΧI	X2	X3	X4	rns	BV	ratio
Row 0:	1	-4	-3	0	0	0	z = 0	
Row 1:	0	1	1	1	0	40	$x_3 = 40$	$x_1 <= 40$
Row 2:	0	2	1	0	1	60	$x_4 = 60$	x ₁ <= 30

Simplex method for standard Max problem

- Step4: Perform pivoting
 - Make coefficient of x1 in row2 to be one and all other rows to be zeros
 - departing variable: x4 and $BV = \{z, x3, x1\}$

Z	x1	x2	х3	x4	rhs	BV
						z = 120
0	0	0.5	1	-0.5	10	$x_3 = 10$
0	1	0.5	0	0.5	30	$x_3 = 10$ $x_1 = 30$

- Repeat step 3-4
 - entering variable: x2 (increase x2 one unit -> z increases one unit)
 - Pivot row: row1

	<u>Z</u>	X1	X2	Sl	S2	rhs	BA	ratio
Row 0:							z = 120	
Row 1:	0	0	(0.5)	1	-0.5	10	$x_3 = 10$	$x_2 <= 20$ $x_2 <= 60$
Row 2:	0	1	0.5	0	0.5	30	$x_1 = 30$	$x_2^- <= 60$

Telcom 2110 23

Simplex method for standard Max problem

- Optimal solution is reached
 - No new entering variable is found
 - x1 = 20, x2 = 20 with maximum profit at z = 4(20) + 3(20) = \$140 per week

Z	x1	x2	Х3	Х4	rhs	BV	ratio
1	0	0	2	1	140	z = 140	
0	0	1	2	-1	20	$x_2 = 20$	
0	1	0	-1	1	20	$x_1 = 20$	

Solving LP problems

- Simplex method
 - Easy to use but to solve large problems need to use computer
- Many software packages implement LP simplex method
 - General math/stats packages: Matlab, Excel, Mathematica etc.
 - Specialized optimization packages : LINDO, AMPL/CPLEX, XPRESS-LP, etc.
- Consider three examples
 - 1. AMPL/CPLEX: modeling language (and software) for designing and solving large complex LP/IP problems.
 - 2. MATLAB: General mathematics solver
 - 3. MS EXCEL with SOLVER (standard spreadsheet tool)

Telcom 2110 25

Example: Simplex Algorithm

• Look at the LP problem (slide 12,13) solved graphically:

Maximize:
$$25X_B + 30X_C$$

Subject to:
$$(1/200)X_B + (1/140)X_C \le 40$$

 $0 \le X_B \le 6000$
 $0 \le X_C \le 4000$

Adding slack variables (S₁, S₂, S₃) and covert LP to standard form

Maximize:
$$Z = 25X_B + 30X_C$$

Subject to:
$$(1/200)X_B + (1/140)X_C + S_1 = 40$$

 $X_B + S_2 = 6000$

$$X_C^b + S_3^2 = 4000$$

$$X_B, X_C, S_1, S_2, S_3 \ge 0$$

Simple AMPL Example

Typing AMPL's description into a file – prod0.mod

```
var XB;

var XC;

maximize Profit: 25*XB + 30*XC;

subject to Time: (1/200) * XB + (1/140) * XC <= 40;

subject to B_limit: 0 <= XB <= 6000;

subject to C_limit: 0 <= XC <= 4000;
```

Call AMPL commands:

```
ampl: model prod0.mod
ampl: solve;
MINOS 5.5: optimal solution found
2 iterations, objective 192000
ampl: display XB, XC;
XB = 6000
XC = 1400
ampl: quit
```

Telcom 2110 27

Matlab Example

• Look at the LP problem (slide 12,13) solved graphically:

```
\begin{array}{ll} \text{Maximize:} & 25X_B + 30X_C \\ \text{Subject to:} & (1/200)X_B + (1/140)X_C \leq 40 \\ & 0 \leq X_B \leq 6000 \\ & 0 \leq X_C \leq 4000 \end{array}
```

| Solution | Solution

fval = -1.9200e+005

>> f = [-25 - 30];

Steps in Implementing an LP Model in Excel

- 1. Organize the data for the model on the spreadsheet.
- 2. Reserve separate cells in the spreadsheet to represent each decision variable in the model.
- 3. Create a formula in a cell in the spreadsheet that corresponds to the objective function.
- 4. For each constraint, create a formula in a separate cell in the spreadsheet that corresponds to the left-hand side (LHS) of the constraint.
- After entering LP model in spreadsheet, use
 Solver to solve the model

Telcom 2110 29

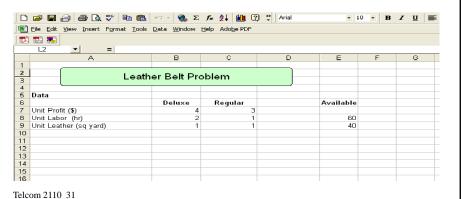
EXCEL Example

- Two types of leather belts: deluxe and regular, each requires 1 sq. yard of leather
- Each week: only 40 sq yard leather & 60 hrs of labor skill available
- Regular belt: 1 hr labor -> \$3 profit
- Deluxe belt: 2 hr labor -> \$4 profit
- Variable:
 - x1 = # deluxe belts produced/wk
 - x2 = # regular belts produced/wk
- LP: maximize profit z = 4x1 + 3x2

s.t. $2x1 + x2 \le 60$, labor constraint $x1 + x2 \le 40$, leather constraint $x1, x2 \ge 0$, lower bound

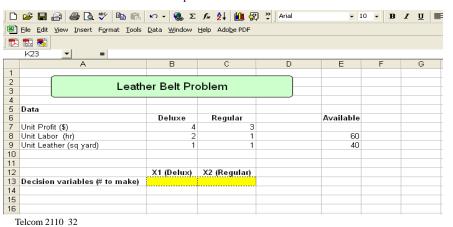
Implementing LP model in a Spreadsheet

- 1. Organizing the data
 - Enter data into spreadsheet in this example: unit profit, unit labor required, unit leather required and available resource
 - Coefficient (e.g., in the objective function and constraints) and values (e.g., RHS) of the model will be referred to or calculated from these data.
 - This makes the spreadsheet model more flexible to data changes.

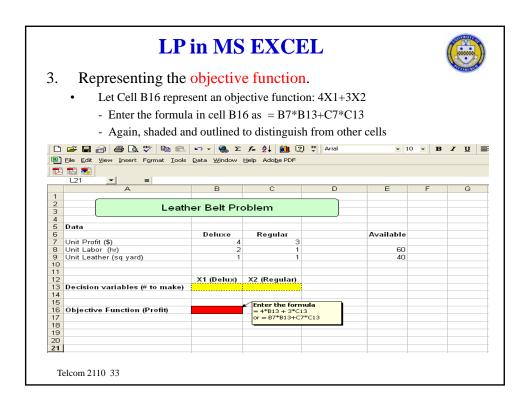


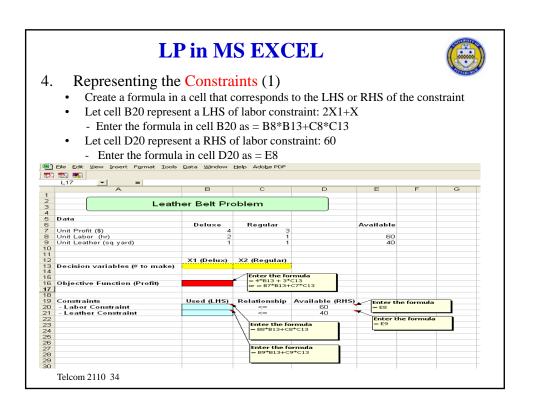
LP in MS EXCEL

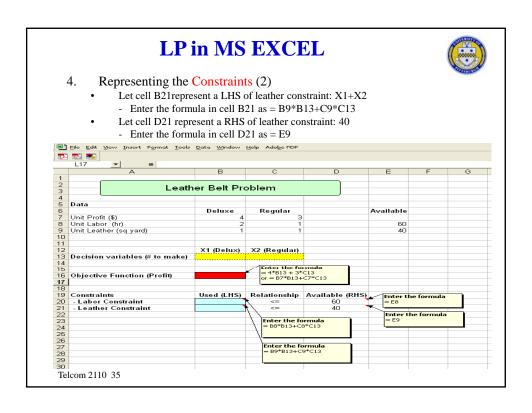
- 2. Representing the decision variables
 - In this example, let cells B13 and C13 represent the decision variables X1 and X2.
 - These cells should be shaded and outlined to visually distinguish them from other elements of the model.
 - Solver will determine the optimal values for these cells

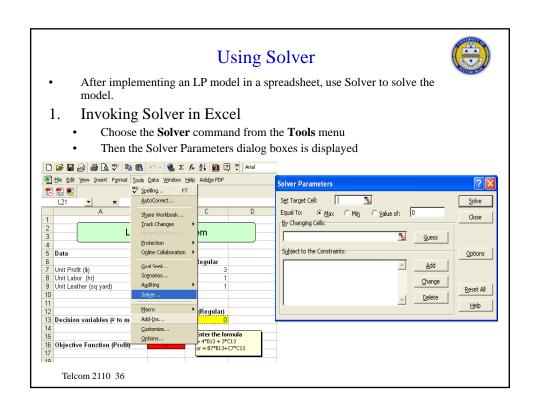


16



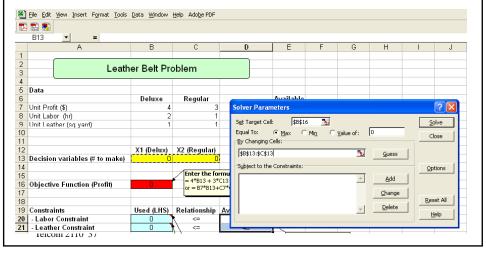






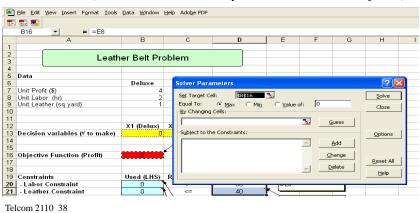
Using Solver

- 3. Defining the Changing Cells
 - Indicate which cells represent the decision variables in the model by entering their locations in the By Changing Cells box
 - In this example, cells B13 and C13 represent the decision variables



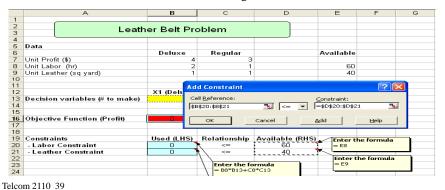
Using Solver

- 2. Defining the Target Cell
 - Specify the location of the cell that represents the objective function by entering it (B16 in this example) in the **Set Target Cell** box
 - Cell B16 contains a formula representing the objective function
 - Select the Max button, as in this example we want Solver to try to maximize this value (Select the Min button when you want to minimize the objective)



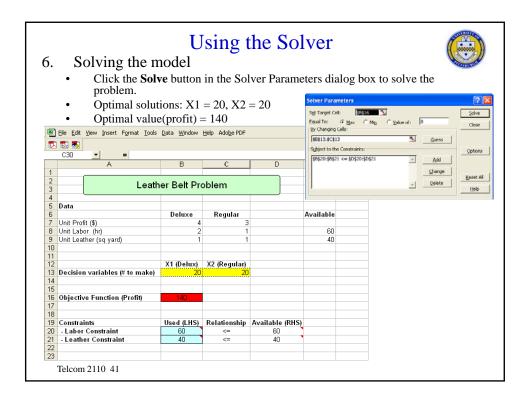
Using Solver

- 4. Defining the Constraint Cells
 - In the **Solver Parameters** box, click the **Add** button to define the constraint cells.
 - In the **Add Constraint** dialog box, specify the locations of cells that represent the LHS of a constraint in the **Cell Reference** box, and the RHS of a constraint in the **Constraint** box, and define the constraint type (<=, =, or >=). Click **Add** button again to define additional constraints.
 - In this example, cells B20 and B21 represent LHS cells whose values must be less than or equal to the values in cells D20 and D21(RHS cells) respectively.
 - Click the **OK** button when finished defining all constraints.



Using Solver

- 5. Defining the Nonnegativity Conditions/Constraints
 - The decision variables must be greater than or equal to zero
 - To add this constraint to the model,
 - specify locations of decision variable cells to the Cell Reference box (B13 through C13 in this example)
 - select a constraint type => from the dropdown box,
 - and enter a numerical constant "0" in the Constraint box
 - Alternatively, the nonnegativity can be imposed by checking the Assume Non-Negative check box in the Solver Option dialog box.



Integer Programming

- Many problems in Network Design involve variables that are restricted to Integer Values – problems with such constraints are called Integer Programs or Mixed Integer Programs when some variables are integer and some are not
- Consider previous LP Example (slides 12-13)
 - Assume that orders for bands and coils are placed (and filled) in 1,000s of pounds only.
 - Although feasible region is greatly reduced, problem becomes much more difficult.
- New Symbolic Model
 - Let the new decision variables be the number of 1000 pound "units" or orders of bands and coils.

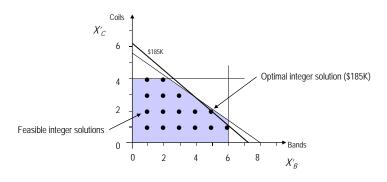
Maximize: $25000X'_{B} + 30000X'_{C}$

Subject to: $(1000/200)X'_B + (1000/140)X'_C \le 40$

 $0 \le X'_B \le 6$, integer $0 \le X'_C \le 4$, integer

Integer Programming

• Graphical Solution Method

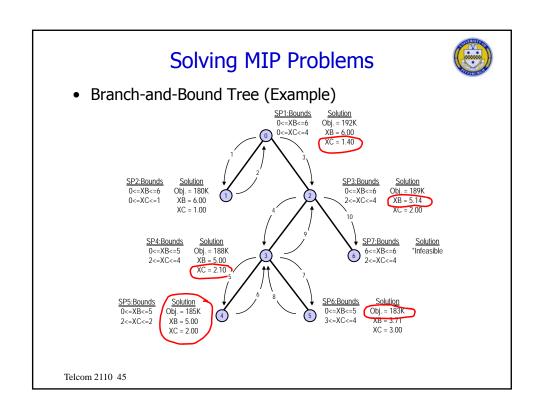


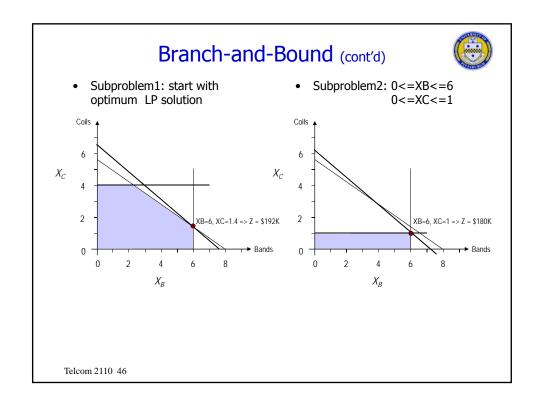
Telcom 2110 43

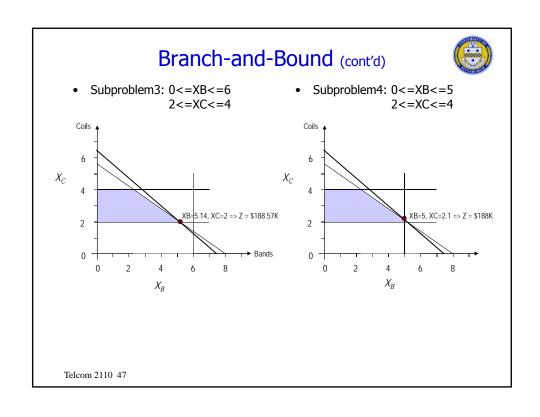
Solving IP Problems

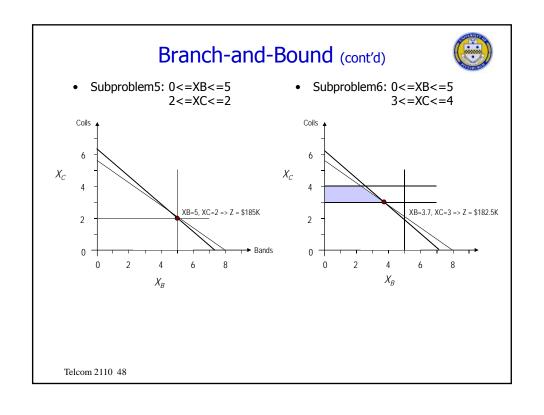
• Branch-and-Bound Procedure

- The solution space consists of a tree of LP subproblems, in which each integer variable is either fixed or its integrality constraint is "relaxed."
- The root node of the tree is the LP relaxation of the problem, i.e. all integer variables are relaxed.
- The relaxation can result in an all integer solution, or a fractional solution (some decision variables are non-integer).
- If the solution of the relaxation has fractional-valued integer variables, a fractional variable is selected for branching and two new subproblems are generated, each with more restrictive bounds on the branching variable.
- The subproblems can result in an all integer solution, an infeasible problem or another fractional solution.
- If the solution is fractional, the process is repeated.
- Branches are "fathomed" if the subproblem is infeasible, the objective value is worse than the current best integer solution or the subproblem gives an integer solution.



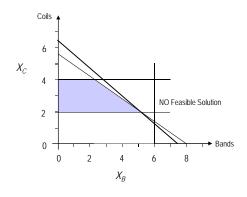






Branch-and-Bound (cont'd)

• Subproblem7: 6<=XB<=6 2<=XC<=4



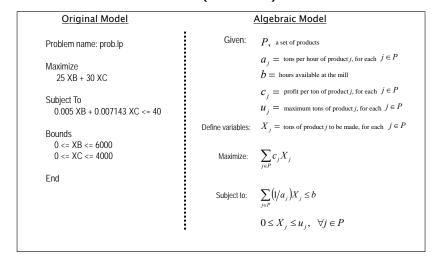
Telcom 2110 49

Matrix Expression of LP/IP Problems

- Why use it?
 - Most LP/IP problems are quite large and it becomes very cumbersome to describe them by explicitly giving each linear function, equality, and inequality in full.
 - It is desirable to model problems in a more general fashion (e.g. give an IP for optimally designing a mesh-restorable network in general as opposed to doing so for a specific network).
 - Formulate with Matrix Vector or Sum format

Algebraic Expression of LP/IP Problems

• Basic Production Model (Revisited)



Telcom 2110 51

AMPL model

• Basic AMPL model (revisited) -prod0.mod

```
set P;
param a {j in P};
param b;
param c {j in P};
param u {j in P};
var X {j in P};
maximize Total_Profit: sum {j in P} c[j] * X[j];
subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;
subject to Limit {j in P}: 0 <= X[j] <= u[j];
```

model data – prod0.dat

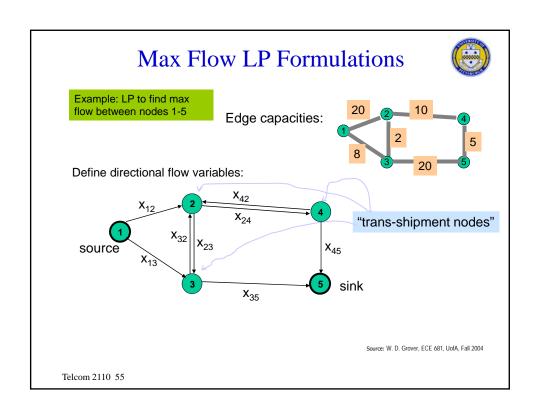
Network Design

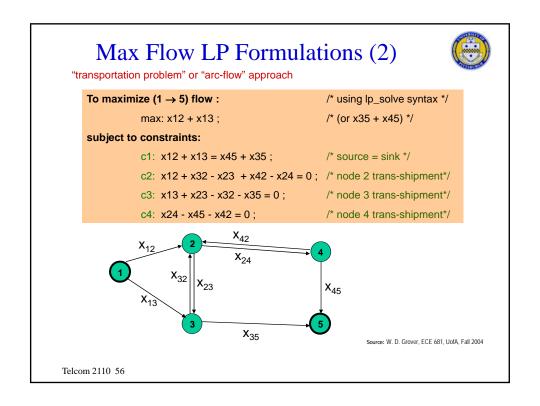
- Many optimization formulations and design tools for network design (WANDL, VPISystems, Opnet)
 - Optimization Techniques usually form the initial basis of the formulation
 - Often use a heuristic or meta-heuristic solution techniques
- Formulation depends
 - Network layer (e.g., WDM, SONET, MPLS, etc.),
 - Technology (wired vs. wireless, etc.)
 - QoS requirements
 Reliability goals
 Other constraints

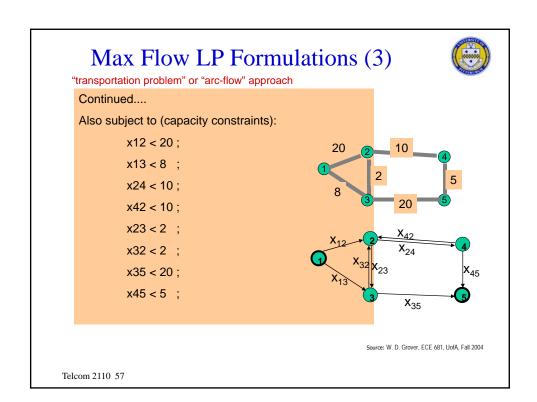
Telcom 2110 53

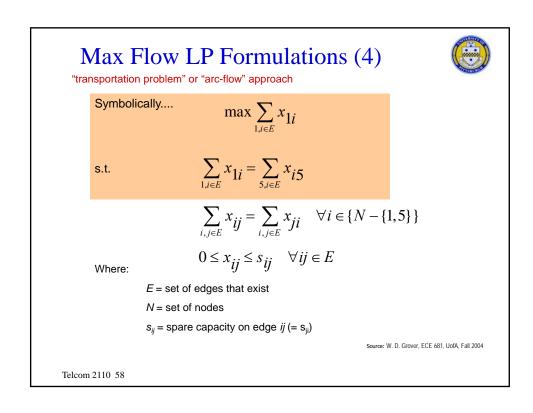
Network Design Optimization Models

- Network design problems
 - Network topology, Switch location, link capacity sizing, routings, etc..
- Good References
 - M. Pioro and D. Medhi, Routing, Flow and Capacity Design in Communication and Computer Networks
 - ITU Network Planning Manual Pt1 and Pt 2
- Consider a couple of simple examples here –more later
 - Max Flow Assignment (routing problem)
 - · Arc formulation
 - · Path formulation
 - Simple Network Design Model









Max Flow LP Formulations

Alternate approach: "flow assignment to routes" or "arc-path" approach

Symbolically.... $\max \quad \sum_{i \in P_{15}} f_i$

s.t. $\sum_{i \in P_{15}} f_i \cdot \delta_i^k \le s_k \qquad \forall k \in E$

 $f_i \! \geq \! 0 \qquad \forall i \in P_{15}$ Where:

E = set of edges that exist (indexed by k)

 P_{15} = set of "eligible" distinct routes between nodes 1 and 5 (source-sink)

 s_k = spare capacity on edge k

if the $\textit{i}^{\,\textit{th}}$ distinct route crosses span k. Zero otherwise $\mathcal{S}^{\,\textit{k}}_i = 1$

See Numerical Example posted on web pages

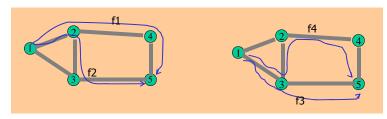
Source: W. D. Grover, ECE 681, UofA, Fall 2004

Telcom 2110 59

Network Flow LP Formulations (6)

"flow assignment to routes" or "arc-path" approach - example

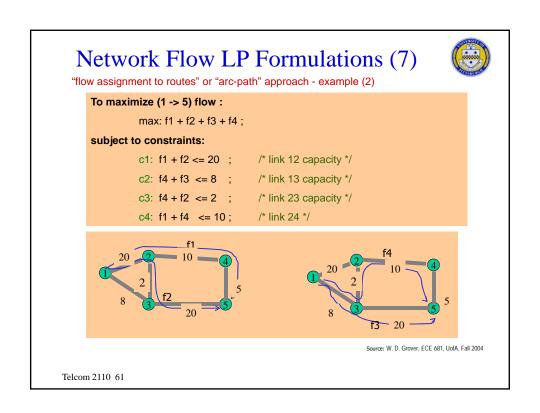
Identify all distinct routes between source- sink (set P_{15})

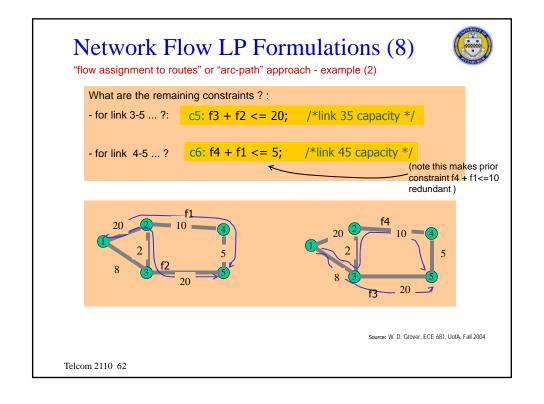


Route	associated
	flow variable
1-2-4-5	f1
1-2-3-5	f2

Route	associated
	flow variable
1-3-5	f3
1-3-2-4-5	f4

Source: W. D. Grover. ECE 681. UofA. Fall 2004





Network Flow LP Formulations (9)

"flow assignment to routes" or "arc-path" approach - example (3)

- ullet Note that the δ_i^k "indicator" parameters do not appear explicitly in the executable model.
- Really they just represent our knowledge of the topology and the routes being considered.
- Implicitly above, we only wrote the flow variables that had non-zero coefficients.

Examples: $\delta_1^{12} = 1$ (flow1 crosses span 12) Hence f1 is in the first constraint

 $\delta_3^{35} = 1$ (flow3 crosses span 35) Hence f3 is in the fifth constraint, etc.

See posted numerical example of arc-path approach

Source: W. D. Grover, ECE 681, UofA, Fall 2004

Telcom 2110 63

Simple Network Design Problem

- indices
 - d=1,2,...,D
 p=1,2,...,P_d
 set of demands (source-destination pairs)
 possible paths for flows of demand d
 - e=1,2,...,E links
- Input parameters (constants)
 - h_d offered traffic load of demand d
 c_e upper bound on capacity of link e
 - $-\xi_{e}$ unit (marginal) cost of link e
 - $-\delta_{edp}$ = 1 if e belongs to path p realizing demand d; 0, otherwise
- variables
 - $-x_{dp}$ flow of demand d on path p
 - y_e capacity of each link

Capacitated flow allocation problem LP formulation – basic design

• Objective:

minimize
$$\mathbf{F}(\mathbf{y}) = \Sigma_{e} \, \xi_{e} \mathbf{y}_{e}$$

• constraints

$$\begin{split} \Sigma_p & \ x_{dp} = h_d & d=1,2,...,D \\ \Sigma_d & \Sigma_p \delta_{edp} x_{dp} \leq \ y_e & e=1,2,...,E \\ y_e \leq c_e & e=1,2,...,E \end{split}$$

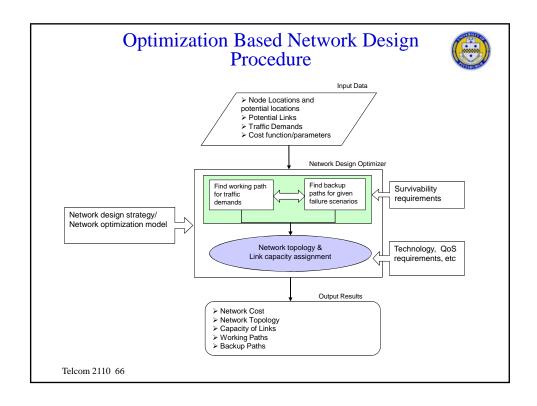
 flow and capacity variables are continuous and nonnegative

$$x_{dp} \ge 0, \quad y_e \ge 0$$

This is an LP problem can solve using Simplex method

See posted numerical example.

Many variations tailor to specific network design problems $\, \Rightarrow \,$ see posted slides from $\,$ D. Medhi book



Complexity

- Real Network Design problems are quite large (have many variables and constraints)
 - Graph Theory and Optimization Based algorithms for network design are complex – when can one use a technique?
- Complexity of an algorithm usually denotes O(.) which denotes the order of time growth in the algorithm as a function of problem variables
 - Dijkstra's Algorithm for SPT $O(N \log(N))$ where N is number of nodes in graph
 - Prim's Algorithm for MST O(E log(N)) where N is # nodes, E # edges
- Problems that can be solved by a deterministic algorithm in a polynomial time complexity denoted P that is $O(N^k)$
- Problems that can not be solved with P complexity denoted NP and don't scale well
 - Linear Programming Problems have P complexity
 - Integer Programming Problems have NP complexity
 - Still Branch and Bound can be used for small/medium problems!
- In general for NP problems use Sub-optimal solution algorithms (meta-heuristics such as greedy alorithm, genetic algorithms, tabu search, etc.)

Telcom 2110 67

Summary

- Basic Constrained optimization
- •Linear Programming
 - Formulation
 - Graphical Solution
 - Simplex Method
 - Software Tools
- Integer Linear Programming
 - Branch and Bound Solution
- Network Design Models
 - •Arc Flow formulation
 - Path formulation
 - Many variations in the literature tailored to specific design problem

