

Bands	Frequencies (MHz)	Regions	GSM/ EDGE	UMTS/ 3GSM	CDMA 2000	TD- SCDM
NMT/CDMA 450	460-493	EU, global			х	
GSM 450	450-467	EU, global	Х			
GSM480	478-496	EU, global	×			
GSM 850 & CDMA 850	869-894	US	х		х	
GSM 900	925-960	EU, global	×			
DCS 1800	1805-1880	EU, global	Х			
PCS 1900	1930-1990	US	Х	Х	х	
IMT 2000	1920-1980 & 2110-2170	EU, global		Х		
China 3G	1880-1920 & 2010-2025 & 2300-2400	China				Х
AWS	1710-1755 & 2110-2155	US		Х	Х	
700 MHz	746-764 & 776-794	US		Х	Х	
ITU Proposal	2500-2690	EU, global		Х		

- Universal Mobile Telecommunication Services
- UMTS is a complete system architecture
 - As in GSM emphasis on standardized interfaces
 mix and match equipment from various vendors
 - Simple evolution from GPRS allows one to reuse/upgrade some of the GPRS backhaul equipment
 - Backward compatible handsets and signaling to support intermode and intersystem handoffs
 - Intermode; TDD to FDD, FDD to TDD
 - Intersystem: UMTS to GSM or UMTS to GPRS
 - UMTS supports a variety of user data rates and both packet and circuit switched services

12

- System composed of three main subsystems

Core Networks (CN)

- HLR (Home Location Register) database located in the user's home system that stores the master copy of the user's service profile. The HLR also stores the UE location on the level of MSC and SGSN,
 3G MSC / VLR
- 3G MSC / VLR
 Switch and database that serves the UE in its current location for Circuit Switched (CS) services. The MSC function is used to switch the CS transactions, and VLR function holds a copy of the visiting user's service profile, as well as more precise information on the UE's location within the serving system.
 3G GMSC (Gateway MSC)
- Switch at the point where UMTS is connected to external CS networks. All incoming and outgoing CS connections go through GMSC.
- incoming and outgoing US connections go through UNSU.
 3G SGSN (Serving GPRS Support Node)
 Similar to that of MSC / VLR but is used for Packet Switched (PS) services. The part of the network that is accessed via the SGSN is often referred to as the PS domain. Upgrade version of serving GPRS support node.
 3G GGSN (Gateway GPRS Support Node)
 Functionality is close to that of GMSC but is in the relation to PS services. Upgraded version of gateway GPRS support Node

Telcom 2720

e

WCDMA	۲
 5-MHz Channel (25 GSM channels) 	
 Each service provider can deploy multiple 5Ml carriers at same cell site 	Hz
 Each 5 MHz shared by multiple subscribers us CDMA 	ing
 Maximum chip rate = 3.84 Mchips/sec 	
 Standard advantages of CDMA 	
 Soft handoff 	
 Frequency reuse cluster size of 1, 	
 Better quality in multipath environment 	
 RAKE receiver 	
 QPSK modulation 	

Scrambling and Channelization

e

24

- · Channelization codes are orthogonal codes
 - Separates transmissions from the same source Uplink: used to separate different physical channels from the same UE – voice and data session

 - Downlink: used to separate transmissions to different physical channels and different UEs
 - UMTS uses orthogonal variable spreading codes
- Scrambling (pseudonoise scrambling)
 - Applied on top of channelization spreading
 - Separates transmissions from different sources - Uplink effect: separate mobiles from each other
 - Downlink effect: separate base stations from each other

om 2720

WCDMA Variable Spreading	0
The channelization codes are Orthogonal Variable Spreading Factor codes that preserves the orthogonality between a user's different physical channels. The OVSF codes can be defined using a code tree.	
where SF is the Spreading Factor of the code and k is the code number, $0 \neq k \neq SF$	
$C_{CH,A,0} = 1 1 1 1 1$ $C_{CH,A,0} = 1 1 1 - 1 - 1$	
$C_{CH,4,2} = 1 - 1 1 - 1$ $C_{CH,4,2} = 1 - 1 1 - 1$ $C_{CH,4,3} = 1 - 1 1 - 1$	
SF = 1 SF - 2 SF = 4 SF between 4 and 512 on DL	
Telcom 2720 2	28

	Scram	bling and Channeliz	ation Codes
1		Channelization code	Scrambling code
		Uplink: Separation of physical data and control channels from same terminal	Uplink: Separation of terminals
	Usage	Downlink: Separation of downlink connections of different users within one cell	Downlink: Separation of sectors (cells)
	Length	4-256 chips (1.0-66.7 μs) Downlink also 512 chips	Uplink: 10 ms 38400 chips or 66.7 μ s = 256 chips Downlink: 10 ms = 38400 chips
	Number of codes	Number of codes under one scrambling code = spreading factor	Uplink: Several millions Downlink: 512
	Code family	Orthogonal Variable Spreading Factor (OVSF)	Long: Gold code Short: Extended S(2) family
	Spreading	Yes, increases transmission bandwidth	No, it does not affect transmission bandwidth
1	felcom 2720	•	29

WCDMA	Parameters	۲
Channel bandwidth	5.MHz	Ī
Downlink RF channel structure	Direct spread spectrum QPSK modulation	
Chip rate	3.84 Mcps	
Frame length	10ms/20ms (optional TDD mode)	
Handover	Softer handover, soft handover and interfrequency handover	
Telcom 2720		37

- Mapping of logical channels onto transport channels
- Selection of transport format for each transport channel
- . Priority handling between data flows of one MS
- Priority handling between MSs by means of dynamic scheduling .
- Identification of MSs on common transport channels
- . Multiplexing/demultiplexing of higher layer PDUs into/from transport blocks to/from the physical layer
- Traffic volume monitoring
- Dynamic transport channel type switching
- Ciphering
- Access service class selection for RACH transmissions

Telcom 2720

47

49

RRC: Functions and Signaling
Procedures
· Broadcast of information related to the non-access stratum (Core Network)

e

57

- Broadcast of information related to the access stratum
- · Establishment, maintenance and release of an RRC connection between the UE and UTRAN
- Establishment, reconfiguration and release of Radio Bearers
- Assignment, reconfiguration and release of radio resources for the RRC connection
- RRC connection mobility functions
- Control of requested QoS
- UE measurement reporting and control of the reporting
- Outer loop power control · Control of ciphering

- PagingInitial cell selection and cell re-selection Arbitration of radio resources on uplink DCH
- Timing advance (TDD mode)

Power Control

e

61

- The RNC sets the target BLER (Block Error Rate) level for the service.
 RNC derives SIR (Signal to Interference Ratio) target from BLER, and sends it to the BTS.
- Uplink RIC performs frequent estimations of the received SIR and compares it to a target SIR.
 - If measured SIR is higher than the target SIR,
 - the base station will command the MS to lower the power:
 - If it is too low, it will command the mobile station to increase its power:
 The measured-command-react cycle is executed a rate of 1500 times per second (1.5 KHz) for each mobile station (Inner Loop).
- The RNC calculates the SIR target once every 10 ms (or more depending on services) and adjusts the SIR target (Outer Loop).
- Downlink, same closed-loop power control technique is used but the motivation is different: it is desirable to provide a marginal amount of additional power to mobile stations at the cell edge, as they suffer increased adjacent cell interference.

	QoS Clas	sses/Ser	vices	٢
Traffic class	Conversational	Streaming	Interactive	Background
Characteristics	Preserve time relation (variation) between information entities of the stream Conversational pattern (stringent and low delay)	Asymmetric applications More tolerant to jitter than conversational class. Use of buffer to smooth out jitter	Request response pattern Preserve data integrity	Destination is not expecting the data within a certain time Preserve data integrity
Application examples	Voice, video telephony, video games	Streaming multimedia	Web browsing, network games	Background download of e- mail, electronic postcard
Telcom 2720				62

Conversational Classes

Speech service

- Speech codec in UMTS employs a Adaptive Multi-rate (AMR) technique. The multi-rate speech coder is a single integrated speech codec with eight source rates: 12.2 (GSM-EFR), 10.2, 7.95, 7.40, 6.70, 5.90, 5.15, 4.75 kbps and 0 kbps.
- The AMR bit rates are controlled by the radio access network and not depend on the speech activity.
- For interoperability with existing cellular networks, some modes are the same as in existing cellular networks:
 12.2 kbps = GSM EFR codec
 7.4 kbps = North American TDMA speech codec
- 6.7 kbps = Japanese PDC
- The AMR speech coder is capable of switching its rate every 20 ms speech frame upon command.

Telcom 2700

63

e

- UMTS enhancements/new features
 - Mutual authentication to protect against false base stations
 - New encrpytion/key generation/authentication algorithms
- with greater security
- · Encryption extended farther back into wired network
- (prevents eavesdropping on microwave relays)

• Only RAND and FRESH and the correct response are

74

```
transmitted over the air
```


Release	Specs complete	First deployed	Major new features defined
98	1998		Last purely 2G GSM release
99	1Q 2000	2003	W-CDMA air interface
4	2Q 2001	2004	Softswitching IP in core network
5	1Q 2002	2006	HSDPA & IP Multimedia System (IMS)
6	4Q 2004	2007	HSUPA, MBMS, GAN, PoC & WLAN integration
7	4Q 2007	future	HSPA+, Better latency & QoS for VoIP
8	? 2009 ?	future	LTE, All-IP