Wireless Communications and Cellular Network Fundamentals

David Tipper
Associate Professor

Graduate Telecommunications and Networking Program
University of Pittsburgh
Telcom 2700 Slides 4

Cellular Concept

Proposed by Bell Labs 1971
Geographic Service divided into smaller "cells"

Neighboring cells do not use same set of frequencies to prevent interference

Often approximate coverage area of a cell by a idealized
 hexagon

Increase system capacity by frequency reuse.

Cellular Networks

- Propagation models represent cell as a circular area
- Approximate cell coverage with a hexagon - allows easier analysis
- Frequency assignment of $F \mathrm{MHz}$ for the system
- The multiple access techniques translates F to T traffic channels
- Cluster of cells $K=$ group of adjacent cells which use all of the systems frequency assignment

Theoretical Propagation Pattern

Cellular Grid Design

Actual Cellular Grid Layout

Cellular Concept

- Why not a large radio tower and large service area?
- Number of simultaneous users would be very limited (to total number of traffic channels T)
- Mobile handset would have greater power requirement
- Cellular concept - small cells with frequency reuse
- Advantages
- lower power handsets
- Increases system capacity with frequency reuse
- Drawbacks:
- Cost of cells
- Handoffs between cells must be supported
- Need to track user to route incoming call/message

Cellular Concept (cont)

- Let T = total number of duplex channels

K cells $=$ size of cell cluster (typically $1,4,7,12,21$)
$\mathrm{N}=\mathrm{T} / \mathrm{K}=$ number of channels per cell

- For a specific geographic area, if clusters are replicated M times, then total number of channels
- system capacity $=\mathrm{M} x \mathrm{~T}$
- Choice of K determines distance between cells using the same frequencies - termed co-channel cells
- K depends on how much interference can be tolerated by mobile stations and path loss
- Example: cell cluster size $\mathrm{K}=7$, frequency reuse factor $=1 / 7$, assume $T=490$ total channels, $\mathrm{N}=\mathrm{T} / \mathrm{K}=70$ channels per cell

Assume $\mathrm{T}=490$ total channels, $K=7, \quad N=70$ channels/cell

Clusters are replicated M=3 times

System capacity $=3 \times 490=1470$ total channels

Cluster Size

From geometry of grid of hexagons only certain values of K are possible if replicating cluster with out gaps
$\mathrm{K}=\mathrm{i}^{2}+\mathrm{ij}+\mathrm{j}^{2}$ where i and j are non-negative

$$
K=7(i=2, j=1)
$$

$$
\mathrm{K}=4(\mathrm{i}=2, \mathrm{j}=0)\left\{\begin{array}{lll}
\frac{3}{2} & \frac{4}{2} & \frac{1}{3} \\
\frac{3}{2} & \frac{1}{2} & 2 \\
2
\end{array}\right.
$$

Cellular Concepts

- To find co-channel neighbors of a cell, move i cells along any chain of hexagons, turn 60 degrees counterclockwise, and move j cells (example: $i=2, j=2, K=12$)

Cellular Concepts

- From hexagonal geometry $d=r \sqrt{3 K}$
- The quantity d / r is called the co-channel reuse ratio $d / r=\sqrt{3 K}$

Telcom 2700

Frequency Reuse

Frequency Reuse

Relate cluster size to carrier to cochannel interference ratio C / I at the edge of a cell
propagation model of the form

$$
P_{r}=P_{t} L d^{-\alpha}
$$

$L=$ constant depending on frequency,
d = distance in meters,
$\alpha=$ path loss coefficient, Then at edge of a cell in center of network the C / I is given by
$\frac{C}{I}=\frac{P_{t} L r^{-\alpha}}{\sum_{j=i}^{6} P_{t} L d^{-\alpha}}=\frac{1}{6}\left(\frac{r}{d}\right)^{-\alpha}$

$K=19$

Frequency Reuse

Solving for d / r results in

$$
\frac{d}{r}=\left(\frac{6 C}{I}\right)^{1 / \alpha}
$$

Remember $d / r=\sqrt{3 K}$, which results in

$$
K=\frac{1}{3}\left(\frac{6 C}{I}\right)^{2 / \alpha}
$$

Example: Consider cellular system with a C/I requirement of $\mathrm{C} / \mathrm{I}=18 \mathrm{~dB}$ and a suburban propagation environment with α $=4$, determine the minimum cluster size.
$18 \mathrm{~dB} \rightarrow 18=10 \log (\mathrm{x}) \rightarrow$
$1.8=\log (\mathrm{x}) \rightarrow \mathrm{x}=10^{1.8} \rightarrow$ $X=63.0957$,
$\mathrm{K}=1 / 3 \times(6 \times 63.0957)^{0.5}=$ 6.4857 ,

Since K must be an integer round up to nearest feasible cluster size => K = 7

Frequency Assignment

- Typical C/I values used in practice are 13-18 dB.
- Once the frequency reuse cluster size K determined frequencies must be assigned to cells
- Must maintain C/I pattern between clusters.
- Within a cluster - seek to minimize adjacent channel interference
- Adjacent channel interference is interference from frequency adjacent in the spectrum

Example: You are operating a cellular network with 25 KHz NMT traffic channels 1 through 12. Labeling the traffic channels as $\{\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 3, \mathrm{f} 4, \mathrm{f} 5, \mathrm{f6}, \mathrm{f7}, \mathrm{f} 8$, f9, f10, f11, f12\} Place the traffic channels in the cells below such that a frequency reuse cluster size of 4 is used and adjacent channel interference is minimized

Sectoring

- Sectoring
- used to improve the C / I ratio
- make cluster size K smaller
- Use directional antennas rather than omni-directional

120 sectoring - cell divided into $3\left(120^{\circ}\right.$ sectoring) or 6 (60° sectoring) equally sized sectors

- Frequencies/traffic channels assigned to cells must partitioned into 3 or 6 disjoint sets
- Reduces the number of co-channel cells causing interference
- Disadvantages: need intra-cell handoff, increases complexity

Sectored Frequency Planning

- Example: Allocate frequencies for a GSM operator in U.S. PCS Bblock who uses a 7 cell frequency reuse pattern with 3 sectors per cell
- Use a Frequency Chart available from FCC web site
- Groups frequencies into 21 categories Cells A-G and sectors 1-3 in each cell

Frequency Chart. 612-685 represent B-block frequencies for GSM

Sectored Frequency Planning

- Example: Allocate frequencies for a 1G Analog AMPS operator in cellular B-block who uses a 7 cell frequency reuse pattern with 3 sectors per cell
- Use a Frequency Chart - available from FCC web site
- Groups frequencies into 21 categories Cells 1-7 and sectors A-B in each cell

Cellular Network Traffic

- Large time of day variations in the traffic
- Spatial variations in the traffic

Traffic Engineering

- Given or $\mathrm{N}=\mathrm{T} / \mathrm{K}$ traffic channels per cell - what is grade of service (GoS) or how many users can be supported for a specific GoS
- Required grade of service?
- Usually 1-2\% blocking probability during busy hour
- Busy hour may be

1. busy hour at busiest cell
2. system busy hour
3. system average over all hours

- Basic analysis called Traffic Engineering or Trunking
- same as circuit switched telephony
- use Erlang B and Erlang C Models

Traffic Engineering

- Estimate traffic distribution?
- Traffic intensity is measured in Erlangs (mathematician AK Erlang)
- One Erlang = completely occupied channel,
- Example: a radio channel occupied for 30 min . per hour carries 0.5 Erlangs
- Traffic intensity per user A_{u}
$A_{u}=$ average call request rate \times average holding time $=\lambda \times t_{n}$
- Total traffic intensity = traffic intensity per user x number of users $=A_{u} \times n_{u}$
- Example 100 subscribers in a cell

20 make 1 call/hour for $6 \mathrm{~min}=>20 \times 1 \times 6 / 60=2 \mathrm{E}$
20 make 3 calls/hour for $1 / 2 \mathrm{~min}=>20 \times 3 \times .5 / 60=.5 \mathrm{E}$
60 make $1 \mathrm{call} / \mathrm{hour}$ for $1 \mathrm{~min}=>60 \times 1 \times 1 / 60=1 \mathrm{E}$
100 users produce 3.5 E load or 35 mE per user

Erlang B Model M/M/C/C queue

- The system has a finite capacity of size C, customers arriving when all servers busy are dropped \rightarrow stable system
- Blocked calls cleared model (BCC)
- Assumptions
- \boldsymbol{C} identical servers process customers in parallel.
- Customers arrive according to a Poisson process with mean rate λ
- Customer service times exponentially distributed with mean rate $1 / \mu$
- Offered load in Erlangs is $a=\lambda / \mu$
\qquad

Telcom 2700

M/M/C/C

- Let π_{i} denote the steady state probability of i customers in the system, then the state transition diagram for $n(t)$ is given by

flow out state $j=$ flow in state j

$$
\begin{array}{rlrl}
\lambda \pi_{0} & =\mu \pi_{1} & j & =0 \\
(\lambda+j \mu) \pi_{j} & =\lambda \pi_{j-1}+(j+1) \mu \pi_{j+1} & 1 \leq j<C \\
(C \mu) \pi_{c} & =\lambda \pi_{c-1} & j=C
\end{array}
$$

Normalization condition $\sum_{j=0}^{\infty} \pi_{j}=1$

M/M/C/C

Probability of a customer being blocked $B(c, a)$

$$
B(c, a)=\frac{\frac{a^{c}}{c!}}{\sum_{n=0}^{c} \frac{a^{n}}{n!}}
$$

$B(c, a) \Leftarrow$ Erlang's B formula, Erlang's blocking formula
Erlang B formula can be computed from the recursive formula

$$
B(c, a)=\frac{a \cdot B(c-1, a)}{c+a \cdot B(c-1, a)}
$$

Usually determined from table or charts - many software programs
Example for 100 users with a traffic load of 3.5 E - how many channels are need in a cell to support 2% call blocking?
From Erlang B table with 2\% call blocking need 8 channels

Traffic Engineering Erlang B table

Appendlx 1.1
Blocked-Calls-Cleared
(Erlang B)

N	A, erlangs												
	B												
	1.0\%	1.2\%	1.5\%	2\%	3\%	5\%	7\%	10\%	15\%	20\%	30\%	40\%	50\%
1	. 0101	. 0121	. 0152	. 0204	. 0309	. 0526	. 0753	. 111	. 176	250	. 429	. 667	1.00
2	. 153	. 168	. 190	.223	. 282	. 381	. 470	. 595	. 796	1.00	1.45	2.00	2.73
3	. 455	. 489	. 535	. 602	. 715	. 899	1.06	1.27	1.60	1.93	2.63	3.48	4.59
4	. 869	. 922	. 992	1.09	1.26	1.52	1.75	2.05	2.50	2.95	\& 39	5.02	6.50
5	1.36	1.43	1.52	1.66	1.88	2.22	2.50	2.88	3.45	4.01	5.19	6.60	8.44
6	1.91	2.00	2.11	2.28	2.54	2.96	3.30	3.76	4.44	5.11	6.51	8.19	10.4
7	2.50	2.60	2.74	2.94	3.25	3.74	4.14	4.67	5.46	6.23	7.86	9.80	12.4
8	3.13	3.25	3.40	3.63	3.99	4.54	5.00	5.60	6.50	7.37	9.21	11.4	14.3
9	3.78	3.92	4.09	4.34	4.75	5.37	5.88	6.55	7.55	8.52	10.6	13.0	16.3
10	4.46	4.61	4.81	5.08	5.53	6.22	6.78	7.51	8.62	9.68	12.0	14.7	18.3
11	5.16	5.32	5.54	5.84	6.33	7.08	7.69	8.49	9.69	10.9	13.3	16.3	20.3
12	5.88	6.05	6.29	6.61	7.14	7.95	8.61	9.47	10.8	12.0	14.7	18.0	22.2
13	6.61	6.80	7.05	7.40	7.97	8.83	9.54	10.5	11.9	13.2	16.1	19.6	24.2
14	7.35	7.56	7.82	8.20	8.80	9.73	10.5	11.5	13.0	14.4	17.5	21.2	26.2
15	8.11	8.33	8.61	9.01	9.65 +	10.6	11.4	12.5	14.1	15.6	18.9	22.9	28.2
16	8.88	9.11	9.41	9.83	10.5	11.5	12.4	13.5	15.2	16.8	20.3	24.5	30.2
17	9.65	9.89	10.2	10.7	11.4	12.5	13.4	-14.5	16.3	18.0	21.7	26.2	32.2
18	10.4	10.7	11.0	11.5	12.2	13.4	14.3	15.5	17.4	19.2	23.1	27.8	34.2
19	11.2	11.5	11.8	12.3	13.1	14.3	15.3	16.6	18.5	20.4	24.5	29.5	36.2
20	12.0	12.3	12.7	13.2	14.0	15.2	16.3	17.6	19.6	21.6	25.9	31.2	38.2

Telcom 2700

Other performance metrics can be related to Erlang B formula $B(c, a)$ The carried load

$$
\lambda_{e}=\lambda \cdot(1-B(c, a)) \quad \Leftarrow \text { Effective throughput of the system }
$$

Mean server utilization

$$
\rho_{e}=\frac{a}{c} \cdot(1-B(c, a))
$$

Mean number in the system

$$
L=\frac{a}{\mu} \cdot(1-B(c, a))
$$

Average delay in the system $\quad W=\frac{1}{\mu}$

Traffic Engineering Example

- Consider a single analog cell tower with 56 traffic channels, when all channels are busy calls are blocked. Calls arrive according to a Poisson process at a rate of 1 call per active user an hour. During the busy hour $3 / 4$ the users are active. The call holding time is exponentially distributed with a mean of 120 seconds.
- (a) What is the maximum load the cell can support while providing 2% call blocking?
From the Erlang B table with c= 56 channels and 2\% call blocking the maximum load $=45.9$ Erlangs
- (b) What is the maximum number of users supported by the cell during the busy hour?
Load per active user $=1$ call $\times 120 \mathrm{sec} / \mathrm{call} \times 1 / 3600 \mathrm{sec}=33.3 \mathrm{mErlangs}$
Number active users $=45.9 /(0.0333)=1377$
Total number users $=4 / 3$ number active users $=1836$
- Determine the utilization of the cell tower ρ
$\rho=\alpha / c=45.9 / 56=81.96 \%$

Erlang C M/M/C Model

- C identical servers processes customers in parallel.
- Customers arrive according to a Poisson process with mean rate λ
- Customer service times exponentially distributed with mean rate $1 / \mu$
- Infinite system capacity - all customers are eventually served - if servers are busy customers queue up
- Blocked calls delayed model (BCD)

M/M/C

The server utilization (ρ)

$$
\rho=\frac{\lambda}{C \mu}
$$

The traffic intensity (a) \Leftarrow offered load (Erlangs)

$$
a=\frac{\lambda}{\mu}
$$

The stability requirement

$$
\rho=\frac{a}{C}<1 \quad \Rightarrow \quad a<C
$$

With traffic intensity a Erlangs, C is the minimum number of servers for stability.

M/M/C

Let π_{i} denote the steady state probability of i customers in the system, then the state transition diagram for $n(t)$ is given by

Flow Balance equations

$$
\begin{array}{rrr}
\lambda \pi_{0}=\mu \pi_{1} & j=0 \\
(\lambda+j \mu) \pi_{j}=\lambda \pi_{j-1}+(j+1) \mu \pi_{j+1} & 1 \leq j<C \\
(\lambda+C \mu) \pi_{j}=\lambda \pi_{j-1}+C \mu \pi_{j+1} & j \geq C
\end{array}
$$

Normalization condition $\sum_{j=0}^{\infty} \pi_{j}=1$

M/M/C
Probability of a customer being delayed $C(c, a)$ is important metric

$$
C(c, a)=\sum_{j=c}^{\infty} \pi_{j}=\frac{\frac{a^{c}}{(c-1)!(c-a)}}{\sum_{n=0}^{c-1} \frac{a^{n}}{n!}+\frac{a^{c}}{(c-1)!(c-a)}}
$$

$C(c, a) \Leftarrow$ Erlang's C formula, Erlang's delay formula
In the telephone system, $C(c, a)$ represents a blocked call delayed (BCD) Widely used to determine call center staffing Difficult to compute due to factorials - several software packages built around it (see links on web site)
Tables and plots available (table on class web page)

Erlang C model

Tables and plots available

NB	Erlang C Traffic Table											
	Maximum Offerd Lood Varnus Bad N											
	0.01	0.05	0.1	0.5	10	2	5	10	15	20	30	40
1	. 0001	. 0005	. 0010	. 0050	. 0100	. 0200	. 0500	. 1000	. 1500	2000	3000	4000
2	. 0142	. 0319	. 0452	. 1025	. 1465	2103	3422	. 5000	. 6278	. 7403	9390	1.117
3	.0850	. 1490	. 1894	. 3339	4291	. 5445	. 7876	1.040	1231	1.393	1.667	1.903
4	2310	. 3533	. 4257	. 6641	8100	9939	1.319	1.653	1.899	2102	2440	2725
5	.4428	. 6239	.7342	1.065	1259	1497	1.905	2313	2607	2847	3.241	3.569
6	. 7110	. 9616	1.099	1.519	1.758	2047	2.532	3.007	3344	3.617	4.062	4.428
7	1.026	1.341	1.510	2.014	2297	2633	3.188	3.723	4103	4.406	4.897	5.298
8	1.382	1.758	1.958	2.543	2856	3246	3.869	4.463	4878	5.210	5.744	6.178
9	1.771	2.208	2.436	3.100	3.450	3.883	4569	5.218	5.668	6.027	6.600	7.065
10	2.189	2.685	2.942	3.679	4077	4.540	5.285	5.986	6.469	6.853	7.465	7.959
11	2.634 3100	3.185 3	3.470	4.279	4712 5363	5213	6.015	${ }^{6} 7.765$	7230	7.658	8.336	8.857 9.761
13	3.587	4.248	4.584	5.529	6028	6602	7.511	8352	8926	9.379	10.09	1.067
14	4.092	4.805	5.165	6.175	6.705	7313	8.273	9.158	9.760	10.23	10.96	11.58
15	4.614	5.377	5.762	6.833	7394	8.035	9.044	9.970	10.60	11.09	11.87	12.49
16	5.150	5.962	6.371	7.502	8093	8.766	9.822	10.79	11.44	11.96	12.77	13.41
17	5.699	6.350	6.991	8.182	8.501	9.505	10.61	11.61	12.29	12.83	13.66	14.33
18	6.261	7.169	7.622	8.871	9.518	10.25	11.40	12.44	13.15	13.70	14.56	15.25
19	6.835	7.788	8.263	9.568	1024	11.01	1220	13.28	14.01	14.58	15.47	16.18
20	7.419	8.417	8.914	10.27	10.97	11.77	13.00	14.12	14.87	15.45	16.37	17.10

Erlang C Model

Other performance measures expressed in terms of $C(c, a)$

$$
\begin{aligned}
& L_{q}=\left(\frac{a}{c-a}\right) \cdot C(c, a) \\
& L=L_{q}+a \\
& W_{q}=\frac{L_{q}}{\lambda}=\frac{\frac{1}{\mu} C(c, a)}{c-a} \\
& W=W_{q}+\frac{1}{\mu}
\end{aligned}
$$

Erlang C model

Distribution of the waiting time in the queue

$$
P\left\{w_{q} \leq t\right\}=1-C(c, a) \cdot e^{-c \mu(1-\rho) t}
$$

The p th percentile of the time spent waiting in the queue t_{p}

$$
t_{p}=\frac{-\ln \left(\frac{1-p}{C(c, a)}\right)}{c \mu(1-\rho)}
$$

Note: $p>1$ - C(c,a)

Traffic Engineering Example 2

- A telephone company has five operators to handle inquires for directory assistance. Inquires arrive according to a Poisson process with an average rate of $\lambda=4.5$ calls/minute. The time to process an inquiry is exponentially distributed with a mean of $1 / \mu=1$ minute/call. If an arriving call sees all operators busy it is placed on hold until an operator becomes free.
(a) What is the probability that a caller will have to wait on hold? The offered load in Erlangs is 4.5 calls $/ \mathrm{min} * 1 \mathrm{~min} / \mathrm{call}=4.5$ erlangs with 5 operators from the Erlang C graphs given in the class handout the probability a caller will be delayed $=C(c, a)=.75$ computing an exact value from the Erlang C formula one gets C(5,4.5) $=.7625$
(b) What is the 95 percentile of the time on hold?
note $\rho=a / c=4.5 / 5=.9, p=.95$

$$
t_{p}=\frac{-\ln \left(\frac{1-p}{C(c, a)}\right)}{c \mu(1-\rho)}
$$

yields $t_{p}=5.4491$ minutes

Traffic Engineering Example 3

- A service provider receives unsuccessful call attempts to wireless subscribers at a rate of 5 call per minute in a given geographic service area. The unsuccessful calls are processed by voice mail and have an average mean holding time of 1 minute. When all voice mail servers are busy - customers are placed on hold until a server becomes free.
- Determine the minimum number of servers to keep the percentage of customers placed on hold < or equal to 1%
The offered load is a = 5 call per minute $\times 1$ minute/call $=5$
From the Erlang C tables 13 servers are needed.
- Determine the .995\% of the delay in access the voice servers
- With $\mathrm{p}=.995, \mathrm{C}(\mathrm{c}, \mathrm{a})=.01, \mathrm{c}=13$, and $\mu=1$

$$
t_{p}=\frac{-\ln \left(\frac{1-p}{C(c, a)}\right)}{c \mu(1-\rho)} \quad \text { yields } t_{p}=.0866 \text { minute }=5.2 \text { secs }
$$

Summary

- Cellular Concept
- Small cells
- Frequency Reuse
- Frequency Planning
- Assignment of frequencies to cells
- Maintain C/I requirements
- Traffic Engineering
- Erlang B model
- Erlang C model

