
300 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

End-To-End WAN Service Availability
Michael Dahlin, Member, IEEE, Bharat Baddepudi V. Chandra, Lei Gao, and Amol Nayate

Abstract—This paper seeks to understand how network fail-
ures affect the availability of service delivery across wide-area net-
works (WANs) and to evaluate classes of techniques for improving
end-to-end service availability. Using several large-scale connec-
tivity traces, we develop a model of network unavailability that
includes key parameters such as failure location and failure dura-
tion. We then use trace-based simulation to evaluate several classes
of techniques for coping with network unavailability. We find that
caching alone is seldom effective at insulating services from failures
but that the combination of mobile extension code and prefetching
can improve average unavailability by as much as an order of mag-
nitude for classes of service whose semantics support disconnected
operation. We find that routing-based techniques may provide sig-
nificant improvements but that the improvements of many indi-
vidual techniques are limited because they do not address all signif-
icant categories of network failures. By combining the techniques
we examine, some systems may be able to reduce average unavail-
ability by as much as one or two orders of magnitude.

Index Terms—Availability, disconnected operation, failure
model, Internet, overlay routing, replication, World-Wide Web.

I. INTRODUCTION

T HIS PAPER seeks to understand how network failures af-
fect the availability of service delivery across wide-area

networks (WANs) and to evaluate classes of techniques for im-
proving end-to-end service availability. By providing a quanti-
tative analysis of these techniques, we hope to provide a frame-
work to help service designers select from and make best use of
currently-available techniques. Further, we seek to evaluate the
potential impact on availability from proposed extensions to the
Internet infrastructure such as replication of active objects [2],
[4], [9], [19], [38], [40], [47] and overlay routing [1], [34].

Although several commercial hosting services today ad-
vertise 99.99% or 99.999% (“four-9’s” or “five-9’s”) server
availability, providing highly availableserversis not sufficient
for providing a highly availableservicebecause it is not an
end-to-end approach: other types of failures can prevent users
from accessing services. Internet connectivity failures, unfortu-
nately, are not rare. Paxson [31], finds that “significant routing
pathologies” prevent pairs of hosts from communicating 1.5%

Manuscript received June 6, 2001; revised November 28, 2001 and June 17,
2002; approved by IEEE TRANSACTIONS ONNETWORKING Editor G. Rouskas.
This work was supported by National Science Foundation CISE Grant CDA-
9624082, the Texas Advanced Technology Program, the Texas Advanced Re-
search Program, Cisco, IBM, Novell, and Tivoli. The work of M. Dahlin was
supported by National Science Foundation CAREER Award CCR-9733842 and
an Alfred P. Sloan Research Fellowship.

M. Dahlin, L. Gao, and A. Nayate are with the Department of Computer
Sciences, University of Texas, Austin, TX 78712-1188 USA (e-mail: dahlin@
cs.utexas.edu; lgao@cs.utexas.edu; nayate@cs.utexas.edu).

B. B. V. Chandra is with Oracle Corporation, Redwood Shores, CA 94065
USA (e-mail: bharat.baddepudi@oracle.com).

Digital Object Identifier 10.1109/TNET.2003.810312

to 3.3% of the time, and more recent measurements [48]
suggest that availability has not significantly improved. In
contrast with the five minutes per year of unavailability for a
five-9’s system, a two-9’s Internet-delivered service would be
unavailable for nearly 15 minutes per day from a typical client.

Although caching can improve file system availability [17],
[20], caching alone may not significantly improve WAN service
availability because much HTTP traffic is uncachable [12], [46].
This limitation motivates us to study the potential of other tech-
niques such as hoarding [20], pushing content [14], [21], relaxed
consistency, mobile extensions to ship service code to proxies or
clients [2], [4], [9], [19], [38], [40], [47], anycast [3], [13], [47],
and overlay routing [1], [34]. Although the performance bene-
fits of many of these techniques have been studied, their impact
on end-to-end availability has not been quantified.

Our analysis faces two challenges. First, we wish to evaluate
the potential effectiveness of a wide range of techniques for a
wide range of services. To do this, we abstract away both the de-
tailed design of the techniques and the semantic requirements of
the services. By using these simplifications, we can determine
upper bounds on improvements that different classes of tech-
niques can yield. To refine these simple bounds, we then explore
the sensitivity of the techniques to factors that could limit their
effectiveness. The second challenge is that existing studies of
WAN unavailability do not quantify several important parame-
ters. To address this challenge, we analyze connectivity traces
to develop a model suitable for evaluating techniques for coping
with unavailability.

This paper makes three contributions. First, we develop a
WAN connectivity model that includes average unavailability,
the distribution of durations of unavailability events, and the
operational location of network failures. A key finding is that
unavailability duration distributions appear heavy-tailed, which
means that long failures account for a significant fraction of
failure durations. Second, we conclude that data-caching-based
techniques for improving service availability will likely have
little success, but that the combination of prefetching and ship-
ping mobile extension code to clients and proxies has the poten-
tial to improve average unavailability by over an order of mag-
nitude. Unfortunately, three factors may significantly limit these
gains: 1) compulsory misses to extension code and state, 2) ca-
pacity misses due to limitations in the number of extensions a
client or proxy can host, and 3) service-specific semantic re-
quirements that prevent some services from using these tech-
niques. Finally, we find that routing-based approaches can sig-
nificantly improve average unavailability, but that near-client,
near-server, and interior network failures all contribute signifi-
cantly to average network unavailability, which limits improve-
ments from efforts that address only one type of problem (e.g.,
multihosting a server with multiple ISPs).

1063-6692/03$17.00 © 2003 IEEE

DAHLIN et al.: END-TO-END WAN SERVICE AVAILABILITY 301

In the rest of this paper, we first discuss related work in the
areas of coping with network unavailability and modeling In-
ternet failure patterns in Section II. We then describe our net-
work unavailability model in Section III. Section IV evaluates
classes of techniques for coping with network failures when de-
livering Internet services. Finally, Section V summarizes our
conclusions.

II. RELATED WORK

The basic techniques we examine for improving robustness
have been studied in other contexts. In file systems, caching,
hoarding, and relaxed consistency can isolate clients from net-
work and server failures [17], [20], [36]. Odyssey [29] explores
using application-specific adaptation to cope with disconnection
by dynamically adjusting service semantics.

In the context of Web services, previous studies have
examined the performance benefits of caching [12], [37],
[45], prefetching [11], [30], [23], [32], pushing updates [25],
[37], push-based content distribution [14], [21], server repli-
cation [27], mobile code [2], [4], [9], [19], [38], [40], and
overlay routing [1], [34], but the impact on end-to-end service
availability of these techniques has not been systematically
quantified.

Systems implementing variations of some of these tech-
niques have been built. The Netscape Navigator browser
supports off-line browsing from its cache and and the Microsoft
Internet Explorer Browser supports hoarding. The Rover toolkit
[19] is designed to support disconnected operation for mobile
clients accessing services. But these techniques have not been
systematically applied to or evaluated for large numbers of
services.

Paxson studies IP-level routing pathologies and finds that
“major routing pathologies” thwart IP routing between a given
pair of hosts 1.5% to 3.4% of the time [31]. The study focuses on
quantifying the prevalence and diagnosing the causes of IP-level
failures. Our analysis builds on this study by studying these
and other traces to determine metrics relevant to end-to-end ser-
vice delivery: failure location and the duration of unavailability
events.

Labovitz et al. [24] examine route availability by studying
routing table update logs. They find that only 25% to 35% of
routes had availability higher than 99.99% and that 10% of
routes were available less than 95% of the time. They find that
60% of failures are repaired in a half hour or less, and that the
remaining failures exhibit a heavy-tailed distribution. These
results are qualitatively consistent with our end-to-end analysis
and provide additional evidence that connectivity failures may
significantly reduce WAN service availability.

Zhanget al. [48] study NIMI and traceroute measurements
taken during December 1999 and January 2000. They find that
routing availability has neither degraded nor improved signifi-
cantly since Paxson’s 1995 study. The focus of this study is on
stationarity of network behavior, and it finds considerable varia-
tion in behavior at different network locations, at different times,
and on different time scales.

This paper is an extension of an earlier study by the same
authors [6].

III. N ETWORK UNAVAILABILITY MODEL

We seek to model parameters of network unavailability that
most directly affect techniques to improve availability. This sec-
tion first defines the key parameters of our model, then describes
the trace workloads we study, then outlines our methodology for
analyzing these workloads, and finally discusses the results of
our analysis.

A. Definitions

We define several key concepts here drawing on terminology
defined in more detail by Trivedi [39]. A service isavailable
to a client when that client can communicate with it. A service
is unavailableto a client when that client cannot communicate
with it due to a network or end-host failure. For each client, a
service alternates between being available and unavailable. We
term a period of time when a service is continuously available to
a given client anavailability eventand a period of time when a
service is continuously unavailable to a given client anunavail-
ability event.

Suppose a service’s availability events with respect to a
client have a sequence of life times , and a
service’s unavailability events have a sequence of down times

. We refer to the probability that a lifetime is
shorter than units of time, , as thetime
to failure distribution function; we also refer to as the
availability duration distribution. Then, the system’s mean
time to failure is MTTF from the start of
an availability event. Under similar assumptions, thetime to
repair distribution functionis , and the
mean time to repair is MTTR . We also
refer to as theunavailability duration distribution.

A service’saverageavailability , (or averate unavail-
ability) is the fraction of time when a service is available (or
unavailable) to an average client. We also considerrequest-av-
erageavailability (or unavailability), which is the fraction of re-
quests in a data set that succeed (or fail) in accessing a service.

These definitions describe a binary on/off model of avail-
ability: if a service is reachable it is available, otherwise, it is
unavailable. An enhancement to the model left as future work is
modeling quality of service. Whereas our simple model tracks
periods of complete disconnection, for some applications the
network has “failed” if the bandwidth falls below a certain level
or the latency rises above some level. A more sophisticated
failure model might account for variations in quality of service
as well as the coarse metric of connectivity on which we focus.

B. Data Sets

Our basic methodology for quantifying availability patterns
uses trace data sets that consist of large numbers of attempts by
pairs of nodes to communicate.

We use two types of dataset. First, traceroute data sets con-
sist of multiple traceroute measurements between pairs of nodes
participating in the study. Second, HTTP data sets consist of
logs of HTTP requests through public Squid [43] proxies to
Web servers. Table I summarizes the data sets we study. In this
table, nhosts is the number of participating nodes. For tracer-
oute traces, each node acted as both a source and a destina-

302 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

TABLE I
NETWORK FAILURE TRACES

tion. For HTTP traces, nhosts shows both the number of proxy
caches traced and the number of servers they contacted. Nsam-
ples shows the number of attempts to communicate in each
trace.

1) Traceroute Data Sets:For the traceroute data sets, each
traceroute episode comprises a series of probes from a source
to a destination. Each probe is sent with a maximum hopcount;
each router traversed by a probe packet decrements the packet’s
hopcount and either forward the packet to the next router on the
path (if the hopcount is nonzero) or sends a reply to the source
of the probe (if the hopcount is zero). The source sets the max-
imum hopcount to one for the first probe and increases this max-
imum by one after each set of three probes. The source sends a
probe after receiving a reply to the previous probe or after a 5-s
timeout, and the traceroute episode ends after sending a set of
three probes with the same hop count when 1) the hopcount ex-
ceeds 30 or 2) the source has received at least one reply from
the final destination node.

We treat each traceroute episode as a sample of network con-
nectivity. Following Paxson’s terminology [31], we classify a
traceroute episode as atemporary failureif 1) some packets
succeed in contacting the target and 2) at least six packets in
a row are dropped. Thus, a temporary failure indicates a con-
nectivity interruption of at least 30 s and of not more than 750 s
(the longest traceroute episode is 30 hops3 probes per hop
5 s per probe). We classify a traceroute episode as apersistent
failure if the traceroute fails to receive a reply from its destina-
tion. Otherwise, we regard the traceroute episode as a successful
attempt by the client to communicate with the server.1

Paxson-1 and Paxson-2 are traceroute measurements taken
and originally analyzed by Paxson [31]. In Paxson-1, each site
executes a traceroute episode with a randomly chosen desti-
nation with an exponential interepisode interval of 2 h. The
number of sites varies over the course of the trace up to a max-
imum of 27 nodes. In Paxson-2, 40% of measurements from a
site are to a randomly chosen target site with exponential in-
terepisode intervals of 2 h. The remaining 60% of a site’s mea-

1In the Paxson data sets, several traceroute end hosts are connected to the
Internet via intermittent ISDN lines [31]. For those hosts, we treat at traceroute
that succeeds in communicating with the last consistently reachable hop as if it
has succeeded in reaching the end host.

surements are sent in bursts with the same 2-h interepisode in-
terval but without changing the target from the previous episode.
Paxson-1-na and Paxson-2-na represent the subset of measure-
ments in the Paxson traces that both begin and end in North
America.

uw-1, uw-3, uw-4a, and uw-4b-all are traceroute traces col-
lected by Savageet al. [34]. In uw-1, the interepisode time is a
uniform distribution with a mean of 15 min; each measurement
is between a random pair of hosts. In uw-3 and uw-4b-all, a
random pair of hosts is selected for each measurement using an
exponential distribution with a mean of 9 and 150 s, respectively.
In uw-4a, every server sends requests to every other server at the
same time; these episodes are scheduled using an exponential
distribution with mean of 1000 s.

A problem with uw-4a is self-interference. Approximately
ten requests are issued by each node “simultaneously,” which
may increase packet losses. To reduce this effect, we filter ob-
vious cases of self-interference: if at least one outbound packet
in a burst of requests from a node makes it to its destination,
then we conclude that connectivity from that node to the In-
ternet is available at the time of the burst. If any other traceroute
during the burst fails to make it beyond the source node subnet
or the bottleneck routers that are traversed on all successful out-
bound requests from that node, we conclude that traceroute was
a victim of self-interference and discard it from the trace set. We
use a similar procedure to filter bursts of inbound traceroutes to
destinations. Overall, we delete 1.6% of the requests from uw-4a
due to self-interference.

2) HTTP Data Sets:The HTTP data sets are traces of
HTTP requests issued by HTTP proxies to HTTP servers. We
post-process the trace to extract successful and unsuccessful
attempts by the proxies to communicate with servers. We first
filter the trace to remove the 22.6% of requests satisfied via a
cache hit or via a sibling cache. We then filter all TCP_RE-
FRESH_MISS requests from the trace because such requests
fail a disproportionate fraction of the time (80%–90% of the
TCP_REFRESH_MISS requests fail in most of the traces.) We
ignore requests with reply code 400 or 500 (which account for
0.37% of all replies) because it is ambiguous whether connec-
tions were successful in these cases. We then count requests
with code 504 (“Gateway time out”) as failed connections,
and we count the remaining requests as successful network
connections from the proxy to the server. Bo1, Rtp, and Squid2
are traces of HTTP requests taken at proxy caches that are
part of the Squid cache hierarchy [43]. Bo1 and Rtp are from
individual proxies, and Squid2 combines requests from nine
proxies.

3) Limitations: There are potential biases in our study re-
sulting from limitations of our data sets.

First, the hosts and network paths that we trace may not be
representative of typical Internet connectivity. Several of our
traceroute data sets were collected by Paxson, and he argues
that the interior nodes measured may be representative of typical
routes but that the end-hosts may not be [31]. Other traceroute
data sets were gathered by Savageet al. [34] from sites selected
for convenience. Although our HTTP traces are sent to a collec-
tion of servers dominated by publicly available servers, requests
are sent from regional Squid proxies. These Squid proxies may

DAHLIN et al.: END-TO-END WAN SERVICE AVAILABILITY 303

be unusual sources both in terms of their network connectivity
and in terms of the users they serve.

Second, although we seek to develop end-to-end failure
models, our data sets are not, strictly speaking, end-to-end. In
particular, the traceroute data sets track failures at the IP level
but omit higher level protocol failures such as DNS failures.
We also omit DNS failures from the HTTP analysis. Finally,
because traceroute server machines’ failure patterns may not be
representative of those of HTTP server machines, we filter out
“end-host” failures from the traceroute data sets. These factors
mean that we may underestimate end-to-end failure rates.

Third, our data sets may under-report the number of fail-
ures that happen near the source node of a request. In both the
HTTP and traceroute data sets, network disruptions near the
intended source of a measurement may prevent requests from
being issued during these periods when they are more likely
than average to fail. We partially compensate by focusing on
the near-destination failures as representative of stub failures.

C. Analysis

Using these data sets, we examine average unavailability,
the failure event duration distribution , and the availability
event duration distribution . We also study the location of
failures, which we define below.

1) Average Availability and Unavailability: We use the re-
quest-average availability and unavailability from our traceroute
data sets as our primary estimate of (time-) average availability
and unavailability. The traceroute data sets (except uw-1) use
exponentially distributed random intermeasurement times. The
fraction of requests that fail in the traceroute traces should cor-
respond to the fraction of time the network is down [44] (ne-
glecting the source failure sampling bias listed above).

For completeness, we also report the request-average unavail-
ability for the HTTP data sets. The HTTP data sets sample
availability according to the request pattern from clients, and
therefore the samples reflect the request-average behavior of the
system. Unfortunately, this request-average behavior may differ
from the time-average behavior because the state of the network
may affect whether a trace sample is taken or not. For example,
if a user’s request to a server fails, it is unlikely the user will
send additional requests in the near future; such an effect could
cause request-average unavailability to understate time-average
unavailability. Conversely, if networks are more likely to fail
during periods of heavy load, then excess samples may be taken
during periods during which requests are unusually likely to fail;
such an effect could cause request-average unavailability to ex-
ceed time-average unavailability.

As Table II shows, for the Paxson data sets, we find that
“temporary” failures (where connectivity is interrupted for at
least 30 s during a traceroute episode but where the traceroute
episode eventually succeeds in contacting its target) cause un-
availability during 0.6%–1.7% of the episodes, and “persistent”
failures (where the traceroute fails to reach its destination)
cause unavailability for 0.07%–0.48% of the episodes. Com-
bining these failures, the average unavailability of these traces
ranges from 0.7% to 1.9%.

We find similar patterns for the uw and HTTP traces. For
the uw data, unavailability due to persistent failures occurs on

TABLE II
FRACTION OF REQUESTSTHAT FAIL

TABLE III
90% CONFIDENCE INTERVALS ON AVERAGE DAILY UNAVAILABILITY

FOR PAXSON DATA SETS

0.0047%–0.59% of the traceroute episodes; temporary failures
are, unfortunately, not included in the uw data sets. The Rtp
and Squid2 traces’ request-average unavailability are similar to
the overall traceroute request-average unavailability: 1.5% and
1.1%. The Bo1 trace shows the worst request-average unavail-
ability, and we note that the component traces of the Squid2 data
set show considerable variability, with individual proxies ex-
hibiting request-average unavailability of 0.37%, 0.5%, 0.67%,
0.85%, 1.2%, 1.6%, 1.8%, 3.6%, and 6.8%.

If we assume that each day’s failures are independent and that
the overall system changes little over the time a data set is col-
lected, then we can consider each day of a data set as a separate
experiment that estimates average daily unavailability, and we
can estimate how likely it is that the sample-average average
daily unavailability is close to the system’s actual average daily
unavailability. Unfortunately, the central limit theorem only al-
lows us to calculate confidence intervals for samples of size
greater than about 30 [18]. Thus, we examine only the Paxson
data sets that exceed 30 days. Table III summarizes the 90%
confidence intervals for the average daily unavailability due to
temporary failures, persistent failures, and all failures.

Overall, the data suggest that typically 0.5%–2% of requests
fail to communicate with their server, but that some proxies
differ considerably from this typical behavior and see request-
average unavailability as low as 0.36% or as high as 7% in our
data sets. Based on the traceroute data sets, it appears likely that
average daily average unavailability exceeds 0.5% but is less
than 2.4% for the systems studied.

2) Duration of Unavailability: We use the discrete connec-
tivity probes in the trace to estimate the duration of periods of
continuous unavailability. As Fig. 1 illustrates, the relatively low
sampling rate in the data sets can lead to two ambiguities for es-
timating the duration of an unavailability event. First, the sam-
ples shown could either be from one long unavailability event
or two (or more) short unavailability events. Second, the begin-
ning of the unavailability event could have occurred soon be-

304 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

Fig. 1. Illustration of ambiguity in unavailability event duration.

fore the first probe that failed or soon after the last probe that
succeeded; there is a similar ambiguity for the ending time. For
our analysis, we assume that any series of unsuccessful requests
without an intervening successful one represents a single un-
availability event, and we use the data to provide both upper
and lower bounds on the duration of each such event.

Our analysis draws on both the HTTP and traceroute data sets.
Neither data set is ideal for our purpose, but they have different
types of limitations. The HTTP data set provides a large number
of probes with relatively short spacing in time, which limits
the duration ambiguities listed above. Unfortunately, the HTTP
probes may not be sent with regularity, so the frequency with
which HTTP probes encounter unavailability events of a given
duration may not track the prevalence of events of that duration.
On the other hand, the traceroute data sets’ probes are Poisson
distributed, so they are likely to sample unavailability events of
a given duration in proportion to their contribution to overall
unavailability time. Unfortunately, the traceroute data sets have
large average intersample intervals, so duration ambiguities are
large.

We group consecutive failed connectivity probes into unavail-
ability events, count the number of unsuccessful probes encom-
passed by each event, and determine the upper and lower bounds
on each event’s durations.

The two right lines of Fig. 2 show the fraction of probes that
sample unavailability events of durationseconds or shorter
in the combined HTTP data set excluding unavailability events
shorter than 30 s. Excluded sub-30-s events account for 28.8%
of the failed probes and 70.7% of the sampled unavailability
events for the lower bound list of durations; they account for
6.5% of the probes and 31.7% of the sampled events for the
upper bound list.

Note that we are more likely to sample a long failure event
than a short one. If we assume that probes are uncorrelated with
failure durations and that the expected number of probes encom-
passed by a randomly selected unavailability event is propor-
tional to the duration of the unavailability event, then the time
to repair cumulative distribution function , which specifies
the probability that an unavailability event selected uniformly at
random takes or fewer seconds to be repaired, is a cumulative
histogram of these probe counts weighted by the inverse of each
count’s failure duration and normalized to make the total proba-
bility equal one. The two left lines in Fig. 2 are calculated in this
manner and represent an estimate of the cumulative distribution
function of the duration of failure events lasting longer than 30 s
for the environment sampled by the combined HTTP data sets.

The time to repair distribution for unavailability events
lasting longer than 30 s appears well modeled by equations of
the form . Using Dataplot’s [28] modified

Fig. 2. Cumulative distribution of the fraction of failed probes encountering
unavailability events lastingt or fewer seconds (fort > 30) and the estimated
unavailability event duration cumulative distribution functionR(t) for
unavailability events lasting at least 30 s.

Levenberg–Marquardt best fit algorithm, we find
and are the best fits for

the lower-bound and upper-bound data, respectively.
Visual inspection suggests that these equations are excellent

approximations of the data. Unfortunately, because of the trans-
formation used to convert the fractions of samples to fractions
of events, we cannot apply standard goodness-of-fit hypothesis
testing techniques such as the Chi-square goodness-of-fit test
or Anderson–Darling goodness-of-fit test [8] to these distribu-
tions. However, to put these fits in perspective, several obser-
vations are worth noting. First, the maximum positive and neg-
ative differences from the data to the fitted lines are

, , , and . Second,
the maximum difference between the lower-bound and upper-
bound data are and . Thus, the
inaccuracy of fitting these equations to these data are similar in
scale to the sampling ambiguity in the underlying data. Third,
the large number of samples in the original untransformed data
set reduces the amount of expected variation between the sample
distribution and the sampled environment’s true underlying dis-
tribution. Thus, even relatively small deviations between the
fitted equations and the data may indicate that the equations do
not completely describe the environment or that the sampling
ambiguities noted above have introduced significant noise.

Fourth, the traceroute data sets appear to exhibit similar un-
availability-duration behavior to the HTTP data sets despite the
differing limitations of the sampling techniques. For these data,
the long interprobe times make it difficult to precisely charac-
terize the duration of short persistent failures. Fig. 3 compares
the duration of long unavailability events—1000 s or more—be-
tween the traceroute and HTTP data sets. We combine all of the
traceroute unavailability events into one data set and all of the
HTTP unavailability events into another and show the cumula-
tive distribution function of the upper and lower bounds.

Based on the data in Figs. 2 and 3, it appears that the duration
of 30 s HTTP and 1000 s traceroute unavailability events
display cumulative distribution functions of the form

with . This function corresponds to aheavy-
tailed distribution typified by a significant number of long un-
availability events, decreasing recovery rate, large variance, and

DAHLIN et al.: END-TO-END WAN SERVICE AVAILABILITY 305

Fig. 3. Cumulative probability function of the duration of failure events lasting
longer than 1000 s. Thex axis is the duration and they axis is the probability
that an unavailability event will have less than the specified duration.

high mean [15]. In particular, this function corresponds to a
Pareto distribution, which has an undefined mean and variance.
Both data sets appear consistent with this behavior; however, it
should be noted that the ambiguities in the data sets prevent us
from conclusively stating that the equation models the under-
lying recovery process.

Besides looking at the fraction of unavailability events of a
given duration, we also look at the fraction of unavailability time
stemming from unavailability events of a given duration. The
unavailability time distribution is the unavailability event du-
ration distribution weighted by the duration of each event and
normalized to a total probability of one; it is, thus, equivalent
to the sample-weighted distribution, which is indicated by two
lines on the right in Fig. 2. Fig. 2 suggests that although long
unavailability events are rare (indicated by two left lines), they
contribute a significant fraction of Internet unavailability time
(indicated by two right lines).

3) Duration of Availability Events:Unfortunately, the data
do not allow us to precisely characterize the distributions of the
durations of availablity events. It is difficult to place an upper
bound on availability event durations because more than 75%
of successful probes in the HTTP data sets and more than 83%
of successful probes in the traceroute data sets encounter avail-
ability events that may span the beginning or end of the trace.
Furthermore, it is difficult to place a lower bound on avail-
ability event durations because the coarse-grained sampling in
our traces may entirely miss some unavailability events. This
sampling ambiguity seems likely to be more of a problem in
estimating availabilty event duration than in estimating unavail-
ability event duration, because we expect most unavailability
events to be considerably shorter than most availability events.
We illustrate these ambiguities in more detail in an extended
technical report [10].

4) Failure Location: Failure location is important because it
influences the effectiveness of routing-based strategies. We use
a simple model that classifies failures into three operationally
significant categories, called near-source, in-middle, and near-
destination. Near-source failures represent failures of the client
stub network that disconnect a source machine or source subnet
from the rest of the Internet. Near-destination failures have a
similar effect on destinations. In-middle failures represent con-

Fig. 4. Location of disconnections. The segments of each bar show the
fractions of failed samples encountering disconnections that occur at specified
locations.

nectivity failures in the middle of the network that prevent a pair
of nodes from contacting one another (on the default route), but
where both nodes are able to contact a significant fraction of the
remaining nodes on the Internet. We also use the term stub fail-
ures to refer to the combined near-source and near-destination
categories.

This location model is admittedly simplistic. Most notably, it
represents in-middle failures as the interruption of connectivity
between a single pair of nodes that does not affect any other
pairs’ ability to communicate. In reality failures in the middle
of the Internet infrastructure will typically affect more than one
pair of nodes [24]. However, we believe that our simple model
provides a reasonable first-order approximation for evaluating
routing based techniques: an in-middle failure represents the
case where both the source and destination can connect to a non-
trivial fraction of the Internet, but cannot connect to each other
by the default route. Assuming that the core Internet is not par-
titioned, routing-based techniques are likely to be able to find
an alternate route between the nodes in such a situation.

We focus on the traceroute data sets because they include
hop-by-hop routing information, and we use the following
heuristics to classify failures into the near-source, in-middle,
and near-destination categories. We define thesource bottle-
neck setas the set of routers that are visited by all successful
outgoing requests from a node and thesource subnet setas the
set of routers whose IP addresses match the source node’s in the
top 24 bits. A failed request is classified as a near-source failure
if 1) the request only succeeds in reaching nodes in the source
bottleneck set or source subnet set or 2) two or more successive
requests from the same source to different destinations fail. We
use a similar definition for the near-destination failures. We
classify all remaining failures as in-middle failures.

Fig. 4 summarizes the fraction of samples that encounter per-
sistent disconnections and are classified as near-source, near-
destination, or in-middle by these criteria.

As noted earlier, the methodology used for gathering the
traces may tend to undersample during periods when the
network is malfunctioning near the source of the intended mea-
surement. As one might therefore expect, the near-destination
average unavailability rate is higher than the near-source av-

306 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

TABLE IV
DEFAULT PARAMETERS FOR THESYNTHETIC UNAVAILABILITY MODEL

erage unavailability rate in most of the data sets. Given that for
these data sets the source and destination nodes were selected
from the same collection of traceroute hosts, we speculate that
the near-destination unavailability rates reported above are
more representative of the stub network disconnection rate than
the near-source rates.

Overall, we observe that both stub network and interior dis-
connections contribute significantly to unavailability but that the
relative prevalence of interior compared to stub failures varies
across traces. A Chi-square test of the frequencies [35] fails to
support the null hypothesis that all eight traces exhibit the same
ratio of stub-to-middle disconnections at even the 1% confi-
dence level, suggesting that the environments measured by the
traces do, in fact, differ. Qualitatively, Paxson2, Paxson2-na,
and uw3 appear dominated by interior disconnections; Paxson1,
Paxson1-na, and uw1 have similar amounts of interior compared
to stub disconnections; and the other traces are dominated by
stub disconnections.

D. Synthetic Model

Based on the analysis above, we develop a simple synthetic
unavailability model that we use to evaluate end-to-end strate-
gies for masking network unavailability. Table IV summarizes
key parameters.

Because the Paxson traceroute data sets are Poisson
distributed and include both “temporary” and “persistent”
disconnections, we draw on them to set our default average
unavailability for the simulations in Section IV, where we use
a default average unavailability of 1.25%. This means that a
given pair of nodes is unable to communicate 1.25% of the
time due to network failures lasting 30 s or longer. In our
above analysis of the trace data sets, we find that the average
unavailability rate can vary significantly, so our experiments
also vary the average network unavailability to evaluate the
sensitivity of our results to this parameter.

Our analysis in Section III-C2 suggests that unavailability
event durations for events lasting longer than 30 s are well mod-
eled by . The average duration of this Pareto
function is unbounded. For our simulations, we use this func-
tion, but in order to ensure a finite mean duration and to allow
us to calculate a MTTF, we truncate the distribution at 500 000 s.
This truncated Pareto distribution has a MTTR of 609 s.

As noted in Section III-C-3, our analysis of the data do not
provide tight bounds on the time to failure distribution function

. In order to make the MTTF consistent with the average
unavailability and MTTR selected above, we use the equation

MTTF MTTF MTTR, giving MTTF s.
Because we do not have good data about the distribution of

, for simplicity we assume that failures arrive indepen-
dently with exponentially distributed interarrival times. Testing
this assumption with better availability episode duration data
is important future work.

Our analysis of disconnection location suggests that both stub
and in-middle disconnections significantly contribute to overall
unavailability. However, our analysis also finds significantly dif-
ferent fractions at different traced locations. For the experiments
where disconnection location is considered (Sections IV-B and
IV-C), we assume a default ratio of near-source to in-middle
to near-destination disconnections of 1:2:1, and we examine the
sensitivity of the results as we vary these ratios.

IV. M ASKING NETWORK UNAVAILABILITY

This section studies two classes of techniques for improving
end-to-end service availability by masking network unavail-
ability. Client-independence techniques provide a (possibly
degraded) version of a service using local resources when the
remote server cannot be contacted. Routing and connectivity
techniques use alternate network paths to route around failures.

These experiments focus on two goals. First, they seek
to quantify the potential effectiveness of these techniques at
improving service availability. In order to provide information
about a broad range of techniques, our experiments abstract
away implementation details and, thus, provide an upper
bound on the techniques’ effectiveness. The second goal of our
experiments, therefore, is to quantify the impact of factors may
limit specific instantiations of these techniques.

A. Client Independence

A range of client-independence techniques are available.

1) Caching. Caching hides network and server failures by
serving requests from a nearby cache rather than a distant
server [17].

2) Relaxed consistency and push-updates. Relaxed con-
sistency can improve availability by allowing caches to
serve stale data during failures rather than requiring the
cache to use (unavailable) current data. Alternately, under
a push-updates protocol [25], [37], servers may update
cached copies before clients request the new versions.
Push-updates, thus, improve the chance that a cache will
contain current data during a disconnection.

3) Prefetching. Prefetching brings objects close to a client
before the client accesses them.Hoarding, a form of
prefetching in which a user identifies groups of ob-
jects to fetch, is effective for disconnected operation in
file systems [20], and the Microsoft Internet Explorer
browser implements a hoarding option for Web pages.
Server push[14], [21], [42] can be thought of as a form
of server-directed prefetching. Note that prefetching is
more aggressive than the push-update approach. Push-
update only distributes new versions of objects that have
already been referenced by a cache, while prefetching
can distribute unreferenced objects in order to avoid
compulsory misses.

DAHLIN et al.: END-TO-END WAN SERVICE AVAILABILITY 307

TABLE V
WEB ACCESSTRACE PARAMETERS

4) Replication of active objects. Several researchers have
proposed systems in which objects may be cached or
replicated and then executed [2], [4], [9], [19], [38], [40].
These techniques may provide ways to extend the ben-
efits of caching, relaxed consistency, application-specific
adaptation [29], and prefetching to the significant fraction
of Web services that are not cachable.

This set of experiments examines the potential effectiveness
of using these client independence techniques to improve ro-
bustness of Internet services by transformingfailed sessionsthat
are interrupted by network disconnections intodegraded ses-
sionsthat are served locally. Clearly, the relative advantage of
degraded sessions over failed sessions will vary from service
to service: some services can provide full service while discon-
nected, others can provide tolerable service across short discon-
nections, and still others require continuous on-line communi-
cation with a remote site to be effective. To cope with this wide
range of service behaviors, this experiment does not attempt to
quantify the benefit of degraded service over failed service; in-
stead it seeks to quantify how often services have the option to
use caching, relaxed consistency, prefetching, or mobile exten-
sions to improve their robustness to network disconnections.

1) Workload and Methodology:In addition to the avail-
ability model described in Section III, the simulator uses two
sets of Web access traces to represent Internet service access
patterns. Table V summarizes key parameters for these traces.
We examine both the Bo1 Squid trace described earlier and a
four-month trace taken at clients at Boston University [7]. This
trace is old, but it includes client cache hits, and the client-ID
mappings are not changed over the trace period. We examine
both traces from the point of view of a proxy shared by all
clients in the trace (Squid-P and BU-P) and from the point of
view of individual client machines (Squid-C and BU-C) with
no shared proxy. Because the Squid traces change the client-ID
mappings daily, we only look at the first day of Squid-C.

For our simulations, we post-process the traces to group in-
dividual accesses intosessions.We define a session as a set
of accesses from a client (-C traces) or proxy (-P traces) to a
single server in which the maximum gap between successive
requests is 60 s. Our figure of merit for availability is the frac-
tion of sessions that complete without interruption. Our simu-
lator uses trace information to classify the objects as cachable
or uncachable and to identify when objects change. It assumes
that each simulated client (-C traces) or proxy (-P traces) has an
infinite cache that stores all objects accessed previously in the
simulation.

To evaluate prefetching and active objects without knowing
the details of each service, we use the simulation parameterin-
stall_timeto represent the amount of time from the first access
by a client or proxy to a service until the service has downloaded

sufficient state or programs or both for the cache to mask dis-
connections. Our defaultinstall_time is 100 s. During thein-
stall_time, clients and proxies must access the service from de-
mand-cached data or via the origin server.

If the network remains up during an entire session, the simu-
lator classifies the session asNo Failure. For sessions in which
the network is unavailable for part or all of the session, the sim-
ulator examines the objects referenced in the session and classi-
fies the session as follows:Cache Hitif all requests are for fresh
cached objects;Stale Hitif all requests are for demand-cached
objects and if some of those objects require updates from the
server;Hoardable Degradedif the install_timefor the service
has completed before the network unavailability event begins
and all requests are for cachable objects but some miss;Dy-
namic Degradedif the install_timehas completed before the
beginning of the network unavailability event but not all session
data are cachable; andFail if the install_timehas not completed
at beginning of the network unavailability event and either some
data are not cachable or some data are cache misses.

For these experiments, we set the failure-location distribu-
tion to make all failures in-middle failures, and we conduct five
trials with different random seeds for the network unavailability
model and graph the mean and standard deviation of results. We
describe improvements to service unavailability in terms analo-
gous to the common definition of “speedup” [16]

improvement

2) Results: First, we examine the effectiveness of these gen-
eral techniques as well as the extent that installation time limits
improvements. The axis of Fig. 5 shows the fraction of ses-
sions classified in the categories listed above on a logarithmic
scale so that equal intervals reflect equal improvements to av-
erage unavailability. The axis shows theinstall_timefor each
service, also using a log scale, and each graph shows these re-
sults for a different workload. When installation times are short,
the combined effect of all techniques is to improve average un-
availability by at most factors of 14.4 (Squid-P), 15.4 (BU-P),
2.7 (Squid-C), and 5.22 (BU-C) for the four workloads com-
pared with the average unavailability that would be encountered
if each request were sent to the origin server.

The improvements available from demand caching appear
small (improvements to average unavailability of 1.1, 1.6, 1.1,
and 1.4 for either caching or caching plus relaxed consistency
or push-updates). Note that the Squid workload’s lower level
caches may hide sessions that only reference cached data,
causing us to understate the benefits of caching. Conversely,
the BU trace are not filtered by caches, but they are old and
may reflect a workload that is unrealistically easy to cache. It
seems likely that caching’s benefits lie between these values.

In contrast with demand caching, aggressive prefetching
plus caching may achieve significant improvements for those
services where prefetching is feasible; the simulations indicate
upper bounds of 3.0, 6.2, 1.8, and 4.0 for this combination.

The only limiting factor to active object replication in this
model is our assumption that each service requires different
extension code and data, and that extensions cannot be down-

308 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

(a) (b)

(c) (d)

Fig. 5. Session result versus state installation time. Each region between two lines represents the fraction of sessions that can be handled by the specified technique.
(a) Squid-P. (b) BU-P. (c) Squid-C. (d) BU-C.

loaded until a service is first accessed. Under these assumptions,
improvements to average unavailability are limited to about an
order of magnitude for these traces because if the network is
down when a service is first accessed or during the firstin-
stall_timeof accesses, no code and data are available to mask the
failure. These “compulsory misses” also limit the prefetching
line in these graphs. If compulsory misses and initialization
times are ignored, or if a longer trace were used to reduce com-
pulsory misses, prefetching could provide improvements in av-
erage unavailability of at most 3.7, 9.7, 4.7, and 12.2 and repli-
cation of active objects could, in principle, provide at least de-
graded service up to 100% of the time.

The potential benefits gradually fall as installation time in-
creases. At a 10 000-s installation time, the upper bound on
availability improvements are 11.0, 11.1, 2.0, and 4.2. This re-
sult is promising: it suggests that services that must download
significant amounts of state to provide acceptable disconnected
service may have the opportunity to do so.

Next, we examine the sensitivity of our results to the un-
derlying average network unavailability. Fig. 6 shows session
results as we vary average network unavailability by reducing
the time between failures and leaving the unavailability dura-
tion distribution unchanged. Due to space limits, we include
only the graph for the Squid-P workload. The results for all
four system configurations/workloads are qualitatively similar.

Fig. 6. Session results as average network unavailability varies for the Squid-P
workload. Each region between two lines represents the fraction of sessions that
can be handled by the specified technique.

These data suggest the improvement in session average unavail-
ability provided by caching, prefetching, and replication of ac-
tive objects are relatively insensitive to the underlying network
unavailability between average network unavailability probabil-
ities of 0.0125% and 12.5%. At average network unavailabili-
ties below that, the traces are so short that relatively few failure
events occur, and our results have too much variance to reach
definitive conclusions.

DAHLIN et al.: END-TO-END WAN SERVICE AVAILABILITY 309

(a)

(b)

Fig. 7. Session average unavailability versus number of cached service
extensions. Each region between two lines represents the fraction of sessions
that can be handled by the specified technique. (a) Squid-P. (b) BU-C.

The experiments above suggest that to significantly improve
overall service availability, services may need to resort to
prefetching and mobile extensions rather than relying on
caching alone. Unfortunately, these techniques can dramati-
cally increase the demand for resources at a client, proxy, or
network. A key limiting factor, therefore, may be how many
resources a cache can devote to each hosted service and how
many services a cache can simultaneously host. Fig. 7 shows
session results when the simulated clients and proxies maintain
only a finite number of local copies of prefetched services and
mobile extensions with MFU policy to evict the rest; results for
LRU replacement and exponentially decaying average MFU
are similar but not shown. For all four workloads the results
are qualitatively similar, but due to the differing number of
services accessed by each of these workloads, the cache size
needed for full benefits is largest for Squid-P, and successively
smaller for BU-P (not shown; see [10]), Squid-C (not shown;
see [10]), and BU-P.

Next, we evaluate the sensitivity of different services to dif-
ferent client-independence techniques. In the previous set of ex-
periments, we averaged across all Web services to evaluate their
availability improvements after applying unavailability masking
techniques. We now explore the benefit that different individual
services could receive. Fig. 8 shows the cumulative distribution
function of average unavailability improvements for the indi-

Fig. 8. Availability improvement versus fraction of services (BU-P).

vidual servers in the BU-P trace. We ran our experiment 50 times
with different random seeds for the failure model and track av-
erage session unavailability for each server across the runs. Each
heavy line shows the cumulative distribution of the fraction of
services that receive at least the unavailability improvement in-
dicated by the axis value. Note that the histograms for the dif-
ferent techniques were computed separately so that the collec-
tion of machines at, say, the 90th percentile of cache improve-
ment may be a different set of machines than at the 90th per-
centile of prefetching improvement.

In these traces, the bottom 15%–25% of services receive
little or no benefit from client independence techniques, about
50% improve by a factor between 1 and 10, and 10%–20%
receive improvements over a factor of 10. Furthermore, al-
though caching alone generally provides little improvement,
there are a few services for which caching can improve average
unavailability by more than a factor of two.

The primary factor determining the improvements provided
to a service by the replication of active objects strategy is the
popularity of the service. Services that are visited more often
are proportionally less likely to suffer a compulsory miss during
a network failure. This relationship is shown in the light line in
Fig. 8, which plots the number of visits in our trace to the service
corresponding to the axis bucket.

Finally, we examine the maximum duration requirements for
client-independent techniques to improve service availability to
different degrees. Fig. 9 shows the service improvement as we
increase the maximum disconnection time that client-indepen-
dent techniques support. For both the Squid-P and (not shown)
BU-P proxy traces, we see one order of magnitude improve-
ment at 10 000 to 100 000 s. This means that in order to im-
prove average service unavailability by an order of magnitude,
the system must mask some failures lasting tens of thousands of
seconds.

These experiments suggest that to take full advantage of client
independence for improving availability, client and proxy vir-
tual machines must be scalable to handle hundreds or thousands
of simultaneously downloaded extensions in order to replicate a
significant fraction of accessed sites. Furthermore, some of the
services may require large amounts of system resources to mask
long failures. We examine the resource management challenges
posed by such a workload in separate studies [5], [41].

310 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

(a)

(b)

Fig. 9. Session average unavailability versus maximum masking time
required. Each region between two lines represents the fraction of sessions that
can be handled by the specified technique. (a) Squid-P. (b) Squid-C.

B. Network Routing

In this section, we evaluate strategies that route around net-
work failures. To simplify the analysis, we classify strategies
into two broad categories: 1) network rerouting and 2) server
replication and selection. The following discussion states the
type of failures masked by each strategy, how we model the
strategies in our experiments, and the service availability im-
provements that the strategies yield.

1) Rerouting. Rerouting techniques still send requests to the
service’s origin server, but they may use alternate routes
when failures occur. Examples of rerouting techniques
include dynamic routing [22] and overlay networks [1],
[34]. In the terminology of this paper, these techniques
address in-middle failures, but will be ineffective against
near-source and near-destination failures.

2) Server replication and selection. This category of tech-
niques directs requests to replicas of the origin servers
when the origin servers are unreachable. Several file sys-
tems [33] and databases [26] provide replicated servers
to handle failures in distributed environments. In the con-
text of the Web, mirror sites with “manual failover,” as
well as replicated servers with anycast [3], [13], [47] can
support server replication. This class of techniques can
resolve near-destination and in-middle failures, but is in-
effective against near-source failures.

(a)

(b)

Fig. 10. Session average unavailability versus network average unavailability.
Each region between two lines represents the fraction of sessions that can be
handled by the specified technique. (a) Squid-P. (b) Squid-C.

As in our analysis of client independence techniques, we ab-
stract implementation details of routing-based techniques and
focus on bounding improvements that they may provide. Several
factors may limit these improvements in practice. For rerouting
strategies, overheads include the failure detection time and route
switching time. For server replication and selection, there are
costs to maintain extra replicas and overheads to select alterna-
tive servers. These overheads vary for different implementations
and may vary for different services (e.g., depending on failures,
consistency, and semantics). Therefore, as with client-indepen-
dence techniques, clients may experience sessions handled by
rerouting or server replication as “degraded” with the signifi-
cance of the deterioration varying on a service-by-service and
implementation-by-implementation basis.

1) Workload and Methodology:We use the same workloads
and similar methodology as for the client-independence exper-
iments. We group requests into sessions and classify each net-
work disconnection by its location: near-source, in-middle, or
near-destination. We run each experiment 25 times and plot the
mean with 90% confidence intervals.

2) Results: In our first set of experiments, we vary the frac-
tion of disconnections in each location category. These graphs
are omitted due to space limits. Across a wide range of ratios,
the findings are as expected: the fraction of unavailability events
that each class of techniques can mask varies in proportion to the

DAHLIN et al.: END-TO-END WAN SERVICE AVAILABILITY 311

(a) (b)

(c) (d)

Fig. 11. Session average unavailability versus network average unavailability (combined techniques). Each region between two lines represents the fraction of
sessions that can be handled by the specified technique. (a) Squid-P. (b) BU-P. (c) Squid-C. (d) BU-C.

fraction of disconnections assigned to a particular location cat-
egory. For example, when in-middle disconnections account for
50% of all disconnections, techniques that mask in-middle dis-
connections but not others can improve average unavailability
by about a factor of two.

Given that the traces exhibit significant fractions of failures at
each location, Amdahl’s Law limits improvements from routing
based strategies that do not address failures in all three loca-
tions. More study is needed to quantify the prevalence of near-
source disconnections precisely, but the preliminary result of
our study suggests that near-source failures account for at least
10%–20% of disconnections, probably limiting routing-based
techniques to less than an order of magnitude improvement.
As noted above, our methodology is likely to underestimate
near-source failures.

Fig. 10 shows the sensitivity of these results as we vary av-
erage network unavailability for the squid traces; the results
for the BU traces are qualitatively similar [10]. As with the
client-independence strategies, the relative improvements to av-
erage unavailability provided by these techniques remains stable
over a wide range of underlying average network availabilities.

C. Combined Techniques

Client-independence techniques are limited by compulsory
misses and installation time, and rerouting techniques are lim-

ited by near-source failures. Because these techniques fail in dif-
ferent circumstances, they may be combined to reduce average
system unavailability.

For example, Fig. 11 shows session average unavailability
under a combined scheme in which network unavailability is
masked by caching, prefetching, and active objects and in which
prefetching and installation of active objects use anycast to ac-
cess replicated servers. This combined approach thus masks all
failures except near-source failures during prefetching or ac-
tive object installation time. Fig. 5 suggests that these results
will be relatively insensitive to increases ininstall_time. Overall
improvements in BU-P for this combined scheme are factors
of 117, 100, 18.2, and 24.5 for average network unavailability
probabilities of 0.0125%, 0.125%, 1.25%, and 12.5%, respec-
tively. This relatively wide improvement range appears to be
due to experimental variation magnified by the small number
of unavailability events observed in the simulations. The graphs
show qualitatively similar results for the other workloads.

V. CONCLUSION

Although Internet services can deploy highly available
servers, deploying highly availableservicesremains problem-
atic due to connectivity failures. A typical client may not be
able to reach a typical server for 15 min per day.

312 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

In this paper, we develop a network unavailability model and
an evaluation strategy for studying broad classes of techniques
for coping with connectivity failures.

These experiments suggest that end-to-end techniques have
the potential to significantly improve WAN service avail-
ability. Although the gains from traditional caching appear
limited, the potential gains from more aggressive techniques,
such as prefetching, content distribution, and replication of
active objects, appear substantial, at least for those services
whose semantics allow for disconnected operation and whose
data footprints are small enough for replication. Quantifying
the fraction of services that meet these requirements is an
important topic for future work, as is developing a scalable
extensible proxy design that can host hundreds or thousands of
downloaded extensions [5].

We speculate that for most services, the path to high end-to-
end availability most likely runs through a combination of ap-
proaches. For example, routing-based techniques might be used
to reduce the impact of compulsory misses on mobile exten-
sions, while mobile extensions might be used to mask network
failure classes not addressed by a particular routing strategy.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their helpful comments, particularly concerning the discussion
of the availability models. They also thank the National Labo-
ratory for Applied Network Research (NLANR) for making the
Squid access logs available under National Science Foundation
Grant NCR-9616602 and Grant NCR-9521745, the Oceans re-
search group for making the BU traces available, the University
of Washington Detour research group for making the uw traces
available, and V. Paxson for making the Paxson traces available.

REFERENCES

[1] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris, “Resilient
overlay networks,” inProc. 18th ACM Symp. Operating Systems Prin-
ciples, 2001, pp. 131–145.

[2] “Internet Content Adaptation Protocol (ICAP) DS-2326 ,” Network Ap-
pliance, Sunnyvale, CA, 2000.

[3] S. Bhattacharjee, M. H. Ammar, E. W. Zegura, N. Shah, and Z. Fei,
“Application layer anycasting,” inProc. IEEE INFOCOM, 1997, pp.
1388–1396.

[4] P. Cao, J. Zhang, and K. Beach, “Active cache: Caching dynamic con-
tents on the Web,” inProc. Middleware, 1998, pp. 373–388.

[5] B. Chandra, M. Dahlin, L. Gao, A. Khoja, A. Nayate, A. Razzaq, and
A. Sewani, “Resource management for scalable disconnected access to
Web services,” inProc. 10th Int. World Wide Web Conf., May 2001, pp.
245–256.

[6] B. Chandra, M. Dahlin, L. Gao, and A. Nayate, “End-to-end WAN ser-
vice availability,” inProc. 3rd USENIX Symp. Internet Technologies and
Systems, 2001, pp. 97–108.

[7] C. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WWW
traces,” Dept. Computer Science, Boston Univ., Boston, MA, Tech. Rep.
TR-95–010, 1995.

[8] R. D’Agostino and M. Stephens, Eds.,Goodness-of-Fit Tech-
niques. New York: Marcel Dekker, 1986.

[9] M. Dahlin, B. Chandra, L. Gao, A. Khoja, A. Nayate, A. Razzaq,
and A. Sewani, “Using mobile extensions to support disconnected
services,” Dept. Computer Sciences, Univ. Texas at Austin, Tech. Rep.
TR-2000-20, 2000.

[10] M. Dahlin, B. Chandra, L. Gao, and A. Nayate, “End-to-end WAN ser-
vice availability (extended version),” Dept. Computer Sciences, Univ.
Texas at Austin, Tech. Rep. UTCS-02-50, 2002.

[11] D. Duchamp, “Prefetching hyperlinks,” inProc. USENIX Symp. Internet
Technologies and Systems, Oct. 1999, pp. 127–138.

[12] B. Duska, D. Marwood, and M. Feeley, “The measured access character-
istics of World-Wide-Web client proxy caches,” inProc. USENIX Symp.
Internet Technologies and Systems, Dec. 1997, pp. 25–36.

[13] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar, “A novel server
selection technique for improving the response time of a replicated ser-
vice,” in Proc. IEEE INFOCOM, Mar. 1998, pp. 783–791.

[14] J. Gwertzman and M. Seltzer, “The case for geographical pushcaching,”
in Proc. HOTOS’95, May 1995, pp. 51–55.

[15] M. Harchol-Balter, “The effect of heavy-tailed job size distributions
on computer system design,” inProc. ASA-IMS Conf. Applications of
Heavy Tailed Distributions in Economics, Engineering and Statistics,
June 1999.

[16] J. Hennessy and D. Patterson,Computer Architecture: A Quantitative
Approach, 2nd ed. San Mateo, CA: Morgan Kaufmann, 1996.

[17] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R.
Sidebotham, and M. West, “Scale and performance in a distributed file
system,”ACM Trans. Comput. Syst., vol. 6, no. 1, pp. 51–81, Feb. 1988.

[18] R. Jain,The Art of Computer Systems Performance Analysis. New
York: Wiley, 1991, ch. 13, pp. 179–200.

[19] A. Joseph, A. de Lespinasse, J. Tauber, D. Gifford, and M. Kaashoek,
“Rover: A toolkit for mobile information access,” inProc. ACM Symp.
Operating Systems Principles, Dec. 1995, pp. 156–171.

[20] J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda
file system,”ACM Trans. Comput. Syst., vol. 10, no. 1, pp. 3–25, Feb.
1992.

[21] M. Korupolu and M. Dahlin, “Coordinated placement and replacement
for large-scale distributed caches,” inProc. 1999 IEEE Workshop In-
ternet Applications, June 1999, pp. 62–71.

[22] K. R. Krishnan, R. Doverspike, and C. Pack, “Improved survivability
with multilayer dynamic routing,”IEEE Commun. Mag., vol. 33, pp.
62–68, July 1995.

[23] T. Kroeger, D. Long, and J. Mogul, “Exploring the bounds of Web la-
tency reduction from caching and prefetching,” inProc. USENIX Symp.
Internet Technologies and Systems, Dec. 1997, pp. 13–22.

[24] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental study of internet
stability and backbone failures,” inProc. FTCS’99, June 1999, pp.
278–285.

[25] D. Li and D. Chariton, “Scalable Web caching of frequently updated
objects using reliable multicast,” inProc. USENIX Symp. Internet Tech-
nologies and Systems, Oct. 1999, pp. 1–12.

[26] A. Moissis, “SYBASE Replication Server: A Practical architechture for
distributing and sharing corporate information,” SYBASE Inc., Tech.
Rep., 1994.

[27] A. Myers, P. Dinda, and H. Zhang, “Performance characteristics of
mirror servers on the internet,” inProc. IEEE INFOCOM, 1999, pp.
304–312.

[28] Dataplot Reference Manual. NIST Handbook Number 148, National In-
stitute of Standards and Technology, Gaithersburg, MD, 2001.

[29] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and
K. Walker, “Agile application-aware adaptation for mobility,” inProc.
ACM Symp. Operating Systems Principles, Oct. 1997, pp. 276–287.

[30] V. Padmanabhan and J. Mogul, “Using predictive prefetching to improve
World Wide Web latency,” inProc. ACM SIGCOMM, July 1996, pp.
22–36.

[31] V. Paxson, “Measurements and analysis of end-to-end internet dy-
namics,” Ph.D. dissertation, University of California, Berkeley, 1997.

[32] J. Pitkow and P. Pirolli, “Mining longest repeating subsequences to pre-
dict World Wide Web surfing,” inProc. USENIX Symp. Internet Tech-
nologies and Systems, Oct. 1999, pp. 139–150.

[33] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D.
Steere, “Coda: A highly available filesystem for a distributedworkstation
environment,”IEEE Trans. Comput., vol. 39, pp. 447–459, Apr. 1990.

[34] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The
end-to-end effects of internet path selection,” inProc. ACM SIGCOMM,
Sept. 1999, pp. 289–299.

[35] G. Snedecor and W. Cochran,Statistical Methods, 7th ed. Ames, IA:
Iowa State Univ. Press, 1980.

[36] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C.
Hauser, “Managing update conflicts in bayou, a weakly connected repli-
cated storage system,” inProc. ACM Symp. Operating Systems Princi-
ples, Dec. 1995, pp. 172–183.

[37] R. Tewari, M. Dahlin, H. Vin, and J. Kay, “Design considerations for
distributed caching on the Internet,” inProc. Int. Conf. Distributed Com-
puting Systems, May 1999, pp. 273–284.

[38] G. Tomlinson, H. Orman, M. Condry, J. Kempf, and D. Farber, “Exten-
sible proxy services framework,” The Internet Engineering Task Force,
IETF-Draft-Tomlinson-Epsfw-00.txt, July 2000.

DAHLIN et al.: END-TO-END WAN SERVICE AVAILABILITY 313

[39] K. Trivedi, Probability and Statistics with Reliability, Queuing, and
Computer Science Applications, 2nd ed. New York: Wiley, 2002.

[40] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal, “Active naming:
Flexible location and transport of wide-area resources,” inProc.
USENIX Symp. Internet Technologies and Systems, Oct. 1999, pp.
151–164.

[41] A. Venkataramani, R. Kokku, and M. Dahlin, “TCP-nice: A mechanism
for background transfers,” inProc. OSDI’02, Dec. 2002, pp. 329–343.

[42] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin,
“The potential costs and benefits of long-term prefetching for content
distribution,”Comput. Commun. J., vol. 25, no. 4, pp. 367–375, 2002.

[43] D. Wessels. (1998) Squid Internet Object Cache. National Lab-
oratory for Applied Network Research. [Online]. Available:
http://squid.nlanr.net/Squid/

[44] R. Wolff, “Poisson arrivals see time averages,”Oper. Res., vol. 30, no.
2, pp. 223–231, 1982.

[45] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Lan-
dray, D. Pinnel, A. Karlin, and H. Levy, “Organization-based analysis
of Web-object sharing and caching,” inProc. USENIX Symp. Internet
Technologies and Systems, Oct. 1999, pp. 25–36.

[46] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy,
“On the scale and performance of cooperative Web proxy caching,” in
Proc. ACM Symp. Operating Systems Principles, Dec. 1999, pp. 16–31.

[47] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D.
Culler, “Using smart clients to build scalable services,” inProc. USENIX
Technical Conf., Jan. 1997, pp. 105–118.

[48] Y. Zhang, V. Paxson, and S. Shenkar, “The stationarity of internet path
properties: Routing, loss, and throughput,” AT&T Center for Internet
Research, International Computer Science Institute (ICSI), Berkeley,
CA, Tech. Rep., 2000.

Michael Dahlin (M’93) received the B.S. degree
summa cum laudein electrical engineering from Rice
University, Houston, TX, and the M.S. and Ph.D.
degrees in computer science from the University of
California, Berkeley.

He is currently an Associate Professor with the
Department of Computer Science, University of
Texas, Austin, where he is an Alfred P. Sloan Re-
search Fellow. His research focuses on the scalability
of operating systems and distributed systems.

Dr. Dahlin has been a member of the Association
for Computing Machinery since 1993.

Bharat Baddepudi V. Chandra received the
B.Tech. degree from the Indian Institute of Tech-
nology, Madras, India, and the M.A. degree in
computer science from the University of Texas,
Austin.

He is currently a Software Engineer working in the
area of database caching with Oracle Corporation,
Redwood Shores, CA. His research interests are in
operating systems performance and distributed sys-
tems availability.

Lei Gao received the B.S. and M.A. degrees in com-
puter science from the University of Texas, Austin,
in 1998 and 2001, respectively, where he is currently
working toward the Ph.D. degree.

His current research is focused on highly available,
low latency, and fault tolerant distributed infrastruc-
tures for Web services.

Amol Nayate received the B.S. degree from the Uni-
versity of Utah, Salt Lake City, in 1999 and the M.A.
degree from the University of Texas, Austin, in 2001,
both in computer sciences. He is currently working
toward the Ph.D. degree in computer science at the
University of Texas, Austin.

His research interests are based on providing
highly available distributed services across wide-area
architectures.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

