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End-To-End WAN Service Availability

Michael Dahlin Member, IEEEBharat Baddepudi V. Chandra, Lei Gao, and Amol Nayate

Abstract—This paper seeks to understand how network fail- to 3.3% of the time, and more recent measurements [48]
ures affect the availability of service delivery across wide-area net- suggest that availability has not significantly improved. In
works (WANs) and to evaluate classes of techniques for improving -, nrast with the five minutes per year of unavailability for a
end-to-end service availability. Using several large-scale connec- . ) , . .
tivity traces, we develop a model of network unavailability that 1V€-9'S system, a two-9's Internet-delivered service would be
includes key parameters such as failure location and failure dura- unavailable for nearly 15 minutes per day from a typical client.
tion. We then use trace-based simulation to evaluate several classes Although caching can improve file system availability [17],
of techniques for coping with network unavailability. We find that  [20], caching alone may not significantly improve WAN service
caching alone is seldom effective at insulating services from failures availability because much HTTP traffic is uncachable [12], [46]
but that the combination of mobile extension code and prefetching S . . ' )
can improve average unavailability by as much as an order of mag- Thls limitation motlvaFes usto study the potential of other tech-
nitude for classes of service whose semantics support disconnectedliques such as hoarding [20], pushing content [14], [21], relaxed
operation. We find that routing-based techniques may provide sig- consistency, mobile extensions to ship service code to proxies or
nificant improvements but that the improvements of many indi-  clients [2], [4], [9], [19], [38], [40], [47], anycast [3], [13], [47],
vidual techniques are limited because they do not address all signif- and overlay routing [1], [34]. Although the performance bene-

icant categories of network failures. By combining the techniques _ . . -
we examine, some systems may be able to reduce average unavaillts Of many of these techniques have been studied, their impact

ability by as much as one or two orders of magnitude. on end-to-end availability has not been quantified.
Index Terms—Availability, disconnected operation, failure Our ana_ly3|s fac_es two Challenges. First, we wish FO evaluate
model, Internet, overlay routing, replication, World-Wide Web. the potential effectiveness of a wide range of techniques for a

wide range of services. To do this, we abstract away both the de-
tailed design of the techniques and the semantic requirements of
. INTRODUCTION the services. By using these simplifications, we can determine

HIS PAPER seeks to understand how network failures afPPer bounds on improvements that different classes of tech-

T fect the availability of service delivery across wide-areBiques canyield. To refine these simple bounds, we then explore
networks (WANSs) and to evaluate classes of techniques for ifRe sensitivity of the techniques to factors that could limit their
proving end-to-end service availability. By providing a quantgffectiveness. The second challenge is that existing studies of
tative analysis of these techniques, we hope to provide a fral{¢AN unavailability do not quantify several important parame-
work to help service designers select from and make best usd&$- To address this challenge, we analyze connectivity traces
currently-available techniques. Further, we seek to evaluate fRglevelop amodel suitable for evaluating techniques for coping
potential impact on availability from proposed extensions to tH¥th unavailability. o _
Internet infrastructure such as replication of active objects [2], THiS Paper makes three contributions. First, we develop a
[4], [9], [19], [38], [40], [47] and overlay routing [1], [34]. /AN .conne_ctlvny mode_l that mclude; average unavailability,

Although several commercial hosting services today athe dlgtrlbutlon qf durations of uqavallablllty ev.ent's, gnd the
vertise 99.99% or 99.999% (“four-9's” or “five-9's”) server°perat_'°”?‘_| Iocatlo_n of net\_/vorl_< failures. A key fmdl_ng is th_at
availability, providing highly availableerversis not sufficient Unavailability duration distributions appear heavy-tailed, which
for providing a highly availableservicebecause it is not an Means that long failures account for a significant fraction of

end-to-end approach: other types of failures can prevent usi@ilure durations. Second, we conclude that data-caching-based

from accessing services. Internet connectivity failures, unfort[?—Chn'queS for improving Service ayaﬂabﬂny will !lkely havg
little success, but that the combination of prefetching and ship-

nately, are not rare. Paxson [31], finds that “significant routin bil tensi de to clients and ios has th ¢
pathologies” prevent pairs of hosts from communicating 1.5 hynd mobrie extension code fo clients and proxies has the poten-

tial to improve average unavailability by over an order of mag-
nitude. Unfortunately, three factors may significantly limit these
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In the rest of this paper, we first discuss related work in the [Il. NETWORK UNAVAILABILITY MODEL

areas of_coping with n_etwork_unavailability and mpdeling I \ve seek to model parameters of network unavailability that
ternet faﬂurg patterns in Secﬂon ,”' We then .descnbe our neFﬁ'ostdirectly affect techniques to improve availability. This sec-
work unava|lab|l_|ty model in _SeCt'(_)n . Sect|on_ v evaluatesﬁon first defines the key parameters of our model, then describes
glas_ses of techmqueg for coping with ngtwork failures \{vhen e trace workloads we study, then outlines our methodology for
livering Internet services. Finally, Section V summarizes oUf, v 7ing these workloads, and finally discusses the results of
conclusions. our analysis.

Il. RELATED WORK A. Definitions

The basic techniques we examine for improving robustnessWe define several key concepts here drawing on terminology
have been studied in other contexts. In file systems, cachinlgfined in more detail by Trivedi [39]. A service @&vailable
hoarding, and relaxed consistency can isolate clients from n&t-a client when that client can communicate with it. A service
work and server failures [17], [20], [36]. Odyssey [29] explores unavailableto a client when that client cannot communicate
using application-specific adaptation to cope with disconnectiovith it due to a network or end-host failure. For each client, a
by dynamically adjusting service semantics. service alternates between being available and unavailable. We

In the context of Web services, previous studies haverm a period of time when a service is continuously available to
examined the performance benefits of caching [12], [374 given client aravailability eventand a period of time when a
[45], prefetching [11], [30], [23], [32], pushing updates [25]service is continuously unavailable to a given clientiaavail-

[37], push-based content distribution [14], [21], server replability event

cation [27], mobile code [2], [4], [9], [19], [38], [40], and Suppose a service's availability events with respect to a
overlay routing [1], [34], but the impact on end-to-end servicelient have a sequence of life timég),T1,75,..., and a
availability of these techniques has not been systematicadlgrvice’s unavailability events have a sequence of down times
quantified. Dy, Dy, Do, .... We refer to the probability that a lifetime is

Systems implementing variations of some of these tecshorter thart units of time,F(¢t) = P(T; <= t), as thetime
niques have been built. The Netscape Navigator browgerfailure distribution functionwe also refer toF(t) as the
supports off-line browsing from its cache and and the Microsddivailability duration distribution Then, the system’s mean
Internet Explorer Browser supports hoarding. The Rover toolkitme to failure is MTTF=[;*(1 — F(t))dt from the start of
[19] is designed to support disconnected operation for mobé@ availability event. Under similar assumptions, thmee to
clients accessing services. But these techniques have not begair distribution functionis R(t) = P(D; <= t), and the
systematically applied to or evaluated for large numbers ofean time to repair is MTTR= [;°(1 — R(t))dt. We also
services. refer toR(t) as theunavailability duration distribution

Paxson studies IP-level routing pathologies and finds thatA service'saverageavailability A.,, (or averate unavail-
“major routing pathologies” thwart IP routing between a giveability U, ) is the fraction of time when a service is available (or
pair of hosts 1.5% to 3.4% of the time [31]. The study focuses amavailable) to an average client. We also considguest-av-
quantifying the prevalence and diagnosing the causes of IP-leggdgeavailability (or unavailability), which is the fraction of re-
failures. Our analysis builds on this study by studying thespiests in a data set that succeed (or fail) in accessing a service.
and other traces to determine metrics relevant to end-to-end seffhese definitions describe a binary on/off model of avail-
vice delivery: failure location and the duration of unavailabilityability: if a service is reachable it is available, otherwise, it is
events. unavailable. An enhancement to the model left as future work is

Labovitz et al. [24] examine route availability by studyingmodeling quality of service. Whereas our simple model tracks
routing table update logs. They find that only 25% to 35% qferiods of complete disconnection, for some applications the
routes had availability higher than 99.99% and that 10% aktwork has “failed” if the bandwidth falls below a certain level
routes were available less than 95% of the time. They find that the latency rises above some level. A more sophisticated
60% of failures are repaired in a half hour or less, and that tFelure model might account for variations in quality of service
remaining failures exhibit a heavy-tailed distribution. Thesas well as the coarse metric of connectivity on which we focus.
results are qualitatively consistent with our end-to-end analysis
and provide additional evidence that connectivity failures md3 Data Sets
significantly reduce WAN service availability. Our basic methodology for quantifying availability patterns

Zhanget al. [48] study NIMI and traceroute measurementases trace data sets that consist of large numbers of attempts by
taken during December 1999 and January 2000. They find tipatirs of nodes to communicate.
routing availability has neither degraded nor improved signifi- We use two types of dataset. First, traceroute data sets con-
cantly since Paxson’s 1995 study. The focus of this study is eist of multiple traceroute measurements between pairs of nodes
stationarity of network behavior, and it finds considerable varigarticipating in the study. Second, HTTP data sets consist of
tion in behavior at different network locations, at differenttimesogs of HTTP requests through public Squid [43] proxies to
and on different time scales. Web servers. Table | summarizes the data sets we study. In this

This paper is an extension of an earlier study by the sar@ble, nhosts is the number of participating nodes. For tracer-
authors [6]. oute traces, each node acted as both a source and a destina-
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TABLE | surements are sent in bursts with the same 2-h interepisode in-
NETWORK FAILURE TRACES terval but without changing the target from the previous episode.
Traceroute Data Sets Paxson-1-na and Paxson-2-na represent the subset of measure-

Data Set___| Year | Duration | mhosts | nsamples ments in the Paxson traces that both begin and end in North
Paxson-1 1994 | 45 days 27| 7016 America.
g:)’:zgﬁ:;'m :ggg jg gzyz gg ‘2‘3(9)23 uw-1, uw-3, uw-4a, and uw-4b-all are traceroute traces col-
Paxson2na 1995 | 48 di&s 3T 13613 lected by Savaget al.[34]. In uw-1, the interepisode time is a
uw-1 1999 | 34 days 36 | 54391 uniform distribution with a mean of 15 min; each measurement
uw-3 1999 | 7days 36| 78810 is between a random pair of hosts. In uw-3 and uw-4b-all, a
xjﬁ_an }ggg }ggzﬁ ;g ;23‘;31 random pair of hosts is selected for each measurement using an

exponential distribution with a mean of 9 and 150 s, respectively.

HTTP D s
ata Sets In uw-4a, every server sends requests to every other server at the

’;“‘la Set | ;502‘3 | ?gr:‘i"“ | 1/‘;‘;‘;52‘24 | g?i‘;‘g;s same time; these episodes are scheduled using an exponential
9 2ys distribution with mean of 1000 s

Rip 2000 | 12 days | 1/282830 | 18577435 _ : g .

Squid2 2000 | 3days | 97327835 | 23490956 A problem with uw-4a is self-interference. Approximately

ten requests are issued by each node “simultaneously,” which
may increase packet losses. To reduce this effect, we filter ob-
tion. For HTTP traces, nhosts shows both the number of proxipus cases of self-interference: if at least one outbound packet
caches traced and the number of servers they contacted. Nsin& burst of requests from a node makes it to its destination,
ples shows the number of attempts to communicate in edtien we conclude that connectivity from that node to the In-
trace. ternet is available at the time of the burst. If any other traceroute
1) Traceroute Data SetsFor the traceroute data sets, eachuring the burst fails to make it beyond the source node subnet
traceroute episode comprises a series of probes from a sourcthe bottleneck routers that are traversed on all successful out-
to a destination. Each probe is sent with a maximum hopcouhtiund requests from that node, we conclude that traceroute was
each router traversed by a probe packet decrements the packevistim of self-interference and discard it from the trace set. We
hopcount and either forward the packet to the next router on thee a similar procedure to filter bursts of inbound traceroutes to
path (if the hopcount is nonzero) or sends a reply to the soudestinations. Overall, we delete 1.6% of the requests from uw-4a
of the probe (if the hopcount is zero). The source sets the malue to self-interference.
imum hopcount to one for the first probe and increases this max2) HTTP Data Sets:The HTTP data sets are traces of
imum by one after each set of three probes. The source sendtTd P requests issued by HTTP proxies to HTTP servers. We
probe after receiving a reply to the previous probe or after a Jpest-process the trace to extract successful and unsuccessful
timeout, and the traceroute episode ends after sending a seattdmpts by the proxies to communicate with servers. We first
three probes with the same hop count when 1) the hopcount &ilter the trace to remove the 22.6% of requests satisfied via a
ceeds 30 or 2) the source has received at least one reply froaghe hit or via a sibling cache. We then filter all TCP_RE-
the final destination node. FRESH_MISS requests from the trace because such requests
We treat each traceroute episode as a sample of network cail-a disproportionate fraction of the time (80%-90% of the
nectivity. Following Paxson’s terminology [31], we classify aflCP_REFRESH_MISS requests fail in most of the traces.) We
traceroute episode astamporary failureif 1) some packets ignore requests with reply code 400 or 500 (which account for
succeed in contacting the target and 2) at least six packet9id7% of all replies) because it is ambiguous whether connec-
a row are dropped. Thus, a temporary failure indicates a cdions were successful in these cases. We then count requests
nectivity interruption of at least 30 s and of not more than 750/¢th code 504 (“Gateway time out”) as failed connections,
(the longest traceroute episode is 30 hep3 probes per hop  and we count the remaining requests as successful network
5 s per probe). We classify a traceroute episode @arsistent connections from the proxy to the server. Bol, Rtp, and Squid2
failure if the traceroute fails to receive a reply from its destinaare traces of HTTP requests taken at proxy caches that are
tion. Otherwise, we regard the traceroute episode as a succeszdl of the Squid cache hierarchy [43]. Bol and Rtp are from
attempt by the client to communicate with the sedver. individual proxies, and Squid2 combines requests from nine
Paxson-1 and Paxson-2 are traceroute measurements tglemnies.
and originally analyzed by Paxson [31]. In Paxson-1, each site3) Limitations: There are potential biases in our study re-
executes a traceroute episode with a randomly chosen destiiting from limitations of our data sets.
nation with an exponential interepisode interval of 2 h. The First, the hosts and network paths that we trace may not be
number of sites varies over the course of the trace up to a mépresentative of typical Internet connectivity. Several of our
imum of 27 nodes. In Paxson-2, 40% of measurements froniraceroute data sets were collected by Paxson, and he argues
site are to a randomly chosen target site with exponential ifat the interior nodes measured may be representative of typical
terepisode intervals of 2 h. The remaining 60% of a site’s me@utes but that the end-hosts may not be [31]. Other traceroute
data sets were gathered by Savagal.[34] from sites selected

1in the Paxson data sets, several traceroute end hosts are connected t8dPeonvenience. AIthough our HTTP traces are sent to a collec-
Internet via intermittent ISDN lines [31]. For those hosts, we treat at tracerottte

that succeeds in communicating with the last consistently reachable hop as it Of servers dominated b_y publi(_:Iy available servers, requests
has succeeded in reaching the end host. are sent from regional Squid proxies. These Squid proxies may
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be unusual sources both in terms of their network connectivity TABLE I
and in terms of the users they serve. FRACTION OF REQUESTSTHAT FAIL
Second, although we seek to develop end-to-end failure

[ Temp | Perst | Total

modgls, our data sets are not, strictly spegking, end-to-end. In Paxsonl 3% 1 043% | 1%
particular, the traceroute data sets track failures at the IP level Paxsonl-na | 1.4% 0.48% | 1.9%
. . . . Q
but omit higher level protocol failures such as DNS failures. iii:gﬁg_na 0"6700/;0 (;)8792‘2"0 (1)';3:
We also omit DNS failures from the HTTP analysis. Finally, uwl NA 0.15% NA
because traceroute server machines’ failure patterns may not be uw3 EA %06217(;% m
: : . uw4a A .61%

Eepresent::ﬂw_e of those of HTTP server machines, we filter out uwdb-all NA | 00047% | Na
end-host” failures from the traceroute data sets. These factors Bol 7.4%
mean that we may underestimate end-to-end failure rates. };[p'd2 H‘Z/’v

qui 170

Third, our data sets may under-report the number of fail-
ures that happen near the source node of a request. In both the

HTTP and traceroute data sets, network disruptions near the TABLE 1Ii

intended source of a measurement may prevent requests from90% CONFIDENCE INTERVALS ON AVERAGE DAILY UNAVAILABILITY

being issued during these periods when they are more likely FOR PAXSON DATA SETS

than average to fail. We partially compensate by focus_ing or I Temp [ Perst [ Total

the near-destination failures as representative of stub failures. axsoni 12X052)% | (032£016)% | (1.5L058%
Paxsonl-na | (1.240.55% | (0.3240.15)% | (1.6 £0.58)%

C. Analysis Paxson2 (1.8£0.27% | (0.28£0.17% | (2.0 £0.36)%
Paxson2-na | (0.79 +0.30)% | (0.21 +0.25)% | (1.0 £0.52)%

Using these data sets, we examine average unavaildBility
the failure event duration distributiofi(¢), and the availability
event duration distributiod'(¢). We also study the location of 0.0047%—0.59% of the traceroute episodes; temporary failures
failures, which we define below. are, unfortunately, not included in the uw data sets. The Rtp

1) Average Aailability and Unavailability: We use the re- and Squid2 traces’ request-average unavailability are similar to
quest-average availability and unavailability from our traceroutke overall traceroute request-average unavailability: 1.5% and
data sets as our primary estimate of (time-) average availabilityi%. The Bol trace shows the worst request-average unavail-
and unavailability. The traceroute data sets (except uw-1) wegility, and we note that the component traces of the Squid2 data
exponentially distributed random intermeasurement times. Teet show considerable variability, with individual proxies ex-
fraction of requests that fail in the traceroute traces should chibiting request-average unavailability of 0.37%, 0.5%, 0.67%,
respond to the fraction of time the network is down [44] (n€B.85%, 1.2%, 1.6%, 1.8%, 3.6%, and 6.8%.
glecting the source failure sampling bias listed above). If we assume that each day’s failures are independent and that

For completeness, we also report the request-average unavhé-overall system changes little over the time a data set is col-
ability for the HTTP data sets. The HTTP data sets samgkcted, then we can consider each day of a data set as a separate
availability according to the request pattern from clients, arekperiment that estimates average daily unavailability, and we
therefore the samples reflect the request-average behavior ofdhe estimate how likely it is that the sample-average average
system. Unfortunately, this request-average behavior may diftaily unavailability is close to the system’s actual average daily
from the time-average behavior because the state of the netwoniavailability. Unfortunately, the central limit theorem only al-
may affect whether a trace sample is taken or not. For examptays us to calculate confidence intervals for samples of size
if a user’s request to a server fails, it is unlikely the user wiljreater than about 30 [18]. Thus, we examine only the Paxson
send additional requests in the near future; such an effect codita sets that exceed 30 days. Table Il summarizes the 90%
cause request-average unavailability to understate time-averegefidence intervals for the average daily unavailability due to
unavailability. Conversely, if networks are more likely to faitemporary failures, persistent failures, and all failures.
during periods of heavy load, then excess samples may be take®verall, the data suggest that typically 0.5%—2% of requests
during periods during which requests are unusually likely to failail to communicate with their server, but that some proxies
such an effect could cause request-average unavailability to difer considerably from this typical behavior and see request-
ceed time-average unavailability. average unavailability as low as 0.36% or as high as 7% in our

As Table Il shows, for the Paxson data sets, we find thdata sets. Based on the traceroute data sets, it appears likely that
“temporary” failures (where connectivity is interrupted for average daily average unavailability exceeds 0.5% but is less
least 30 s during a traceroute episode but where the tracerahsm 2.4% for the systems studied.
episode eventually succeeds in contacting its target) cause ur2) Duration of Unavailability: We use the discrete connec-
availability during 0.6%—1.7% of the episodes, and “persistentiVity probes in the trace to estimate the duration of periods of
failures (where the traceroute fails to reach its destinatioodntinuous unavailability. As Fig. 1 illustrates, the relatively low
cause unavailability for 0.07%—-0.48% of the episodes. Cormsampling rate in the data sets can lead to two ambiguities for es-
bining these failures, the average unavailability of these tradé@sating the duration of an unavailability event. First, the sam-
ranges from 0.7% to 1.9%. ples shown could either be from one long unavailability event

We find similar patterns for the uw and HTTP traces. Faor two (or more) short unavailability events. Second, the begin-
the uw data, unavailability due to persistent failures occurs amg of the unavailability event could have occurred soon be-
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without an intervening successful one represents a single un- Failue Duration (5
availability event, and we use the data to provide both upper S , _ '
and lower bounds on the duration of each such event. Fig. 2. Cumulative distribution of the fraction of failed probes encountering

. unavailability events lasting or fewer seconds (far > 30) and the estimated
Ouranalysis draws on both the HTTP and traceroute data S@fgwailability event duration cumulative distribution functiaR(t) for

Neither data set is ideal for our purpose, but they have differemavailability events lasting at least 30 s.
types of limitations. The HTTP data set provides a large number
of probes with relatively short spacing in time, which limitd_evenberg—Marquardt best fit algorithm, we fiRgz(¢) = 1—
the duration ambiguities listed above. Unfortunately, the HTTE.65t %8¢ and Ryp(t) = 1 — 14.79t~%-8 are the best fits for
probes may not be sent with regularity, so the frequency withe lower-bound and upper-bound data, respectively.
which HTTP probes encounter unavailability events of a given Visual inspection suggests that these equations are excellent
duration may not track the prevalence of events of that durati@pproximations of the data. Unfortunately, because of the trans-
On the other hand, the traceroute data sets’ probes are Poidsomation used to convert the fractions of samples to fractions
distributed, so they are likely to sample unavailability events of events, we cannot apply standard goodness-of-fit hypothesis
a given duration in proportion to their contribution to overaltesting techniques such as the Chi-square goodness-of-fit test
unavailability time. Unfortunately, the traceroute data sets hawe Anderson—Darling goodness-of-fit test [8] to these distribu-
large average intersample intervals, so duration ambiguities fioms. However, to put these fits in perspective, several obser-
large. vations are worth noting. First, the maximum positive and neg-

We group consecutive failed connectivity probes into unavaitive differences from the data to the fitted lines QEB =
ability events, count the number of unsuccessful probes enca29, D;y = .003, D, = .007, and D = .031. Second,
passed by each event, and determine the upper and lower bouhdsmaximum difference between the lower-bound and upper-
on each event’s durations. bound data ar®; ; . 5 = .038 andD; ;_, 5 = 0. Thus, the

The two right lines of Fig. 2 show the fraction of probes thahaccuracy of fitting these equations to these data are similar in
sample unavailability events of duratienseconds or shorter scale to the sampling ambiguity in the underlying data. Third,
in the combined HTTP data set excluding unavailability eventise large number of samples in the original untransformed data
shorter than 30 s. Excluded sub-30-s events account for 28.8&treduces the amount of expected variation between the sample
of the failed probes and 70.7% of the sampled unavailabilitistribution and the sampled environment’s true underlying dis-
events for the lower bound list of durations; they account faribution. Thus, even relatively small deviations between the
6.5% of the probes and 31.7% of the sampled events for thitted equations and the data may indicate that the equations do
upper bound list. not completely describe the environment or that the sampling

Note that we are more likely to sample a long failure evemaimbiguities noted above have introduced significant noise.
than a short one. If we assume that probes are uncorrelated witRourth, the traceroute data sets appear to exhibit similar un-
failure durations and that the expected number of probes encamailability-duration behavior to the HTTP data sets despite the
passed by a randomly selected unavailability event is propdiffering limitations of the sampling techniques. For these data,
tional to the duration of the unavailability event, then the timthe long interprobe times make it difficult to precisely charac-
to repair cumulative distribution functioR(t), which specifies terize the duration of short persistent failures. Fig. 3 compares
the probability that an unavailability event selected uniformly dhe duration of long unavailability events—21000 s or more—be-
random takes or fewer seconds to be repaired, is a cumulativeveen the traceroute and HTTP data sets. We combine all of the
histogram of these probe counts weighted by the inverse of edadteroute unavailability events into one data set and all of the
count’s failure duration and normalized to make the total probBFT TP unavailability events into another and show the cumula-
bility equal one. The two left lines in Fig. 2 are calculated in thisve distribution function of the upper and lower bounds.
manner and represent an estimate of the cumulative distributiorBased on the data in Figs. 2 and 3, it appears that the duration
function of the duration of failure events lasting longer than 30cf 30+ s HTTP and 1008 s traceroute unavailability events
for the environment sampled by the combined HTTP data setisplay cumulative distribution functions of the form(t) =

The time to repair distributiof®(¢) for unavailability events 1—(k/¢)® with « ~ 0.85. This function corresponds tdeavy-
lasting longer than 30 s appears well modeled by equationstailed distribution typified by a significant number of long un-
the form R(t) = 1 — AtB. Using Dataplot’s [28] modified availability events, decreasing recovery rate, large variance, and
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Fig.3. Cumulative probability function of the duration of failure events lasting

longer than 1000 s. The axis is the duration and theaxis is the probability Fig. 4. Location of disconnections. The segments of each bar show the

that an unavailability event will have less than the specified duration. fractions of failed samples encountering disconnections that occur at specified
locations.

high mean [15]. In particular, this function corresponds to a

Pareto distribution, which has an undefined mean and varianpectivity failures in the middle of the network that prevent a pair
Both data sets appear consistent with this behavior; howevegfinodes from contacting one another (on the default route), but
should be noted that the ambiguities in the data sets preventuere both nodes are able to contact a significant fraction of the
from conclusively stating that the equation models the undeemaining nodes on the Internet. We also use the term stub fail-
lying recovery process. ures to refer to the combined near-source and near-destination

Besides looking at the fraction of unavailability events of aategories.
given duration, we also look at the fraction of unavailability time This location model is admittedly simplistic. Most notably, it
stemming from unavailability events of a given duration. Theepresents in-middle failures as the interruption of connectivity
unavailability time distribution is the unavailability event dubetween a single pair of nodes that does not affect any other
ration distribution weighted by the duration of each event anmwhirs’ ability to communicate. In reality failures in the middle
normalized to a total probability of one; it is, thus, equivalerif the Internet infrastructure will typically affect more than one
to the sample-weighted distribution, which is indicated by twpair of nodes [24]. However, we believe that our simple model
lines on the right in Fig. 2. Fig. 2 suggests that although longovides a reasonable first-order approximation for evaluating
unavailability events are rare (indicated by two left lines), theputing based techniques: an in-middle failure represents the
contribute a significant fraction of Internet unavailability timecase where both the source and destination can connect to a non-
(indicated by two right lines). trivial fraction of the Internet, but cannot connect to each other

3) Duration of Availability Events:Unfortunately, the data by the default route. Assuming that the core Internet is not par-
do not allow us to precisely characterize the distributions of thigdoned, routing-based techniques are likely to be able to find
durations of availablity events. It is difficult to place an uppean alternate route between the nodes in such a situation.
bound on availability event durations because more than 75%M\e focus on the traceroute data sets because they include
of successful probes in the HTTP data sets and more than 888&fp-by-hop routing information, and we use the following
of successful probes in the traceroute data sets encounter aveliristics to classify failures into the near-source, in-middle,
ability events that may span the beginning or end of the tra@nd near-destination categories. We define gbarce bottle-
Furthermore, it is difficult to place a lower bound on availneck sets the set of routers that are visited by all successful
ability event durations because the coarse-grained samplingirigoing requests from a node and Huairce subnet seis the
our traces may entirely miss some unavailability events. Thist of routers whose IP addresses match the source node’s in the
sampling ambiguity seems likely to be more of a problem itop 24 bits. A failed request is classified as a near-source failure
estimating availabilty event duration than in estimating unavaif-1) the request only succeeds in reaching nodes in the source
ability event duration, because we expect most unavailabilibpttleneck set or source subnet set or 2) two or more successive
events to be considerably shorter than most availability eventsquests from the same source to different destinations fail. We
We illustrate these ambiguities in more detail in an extendede a similar definition for the near-destination failures. We
technical report [10]. classify all remaining failures as in-middle failures.

4) Failure Location: Failure location is important because it Fig. 4 summarizes the fraction of samples that encounter per-
influences the effectiveness of routing-based strategies. We aisgent disconnections and are classified as near-source, near-
a simple model that classifies failures into three operationalliestination, or in-middle by these criteria.
significant categories, called near-source, in-middle, and nearAs noted earlier, the methodology used for gathering the
destination. Near-source failures represent failures of the clierdgces may tend to undersample during periods when the
stub network that disconnect a source machine or source subrettvork is malfunctioning near the source of the intended mea-
from the rest of the Internet. Near-destination failures havesarement. As one might therefore expect, the near-destination
similar effect on destinations. In-middle failures represent coaverage unavailability rate is higher than the near-source av-
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TABLE IV
DEFAULT PARAMETERS FOR THESYNTHETIC UNAVAILABILITY MODEL

Aaw = MTTF/MTTF + MTTR, giving MTTF = 48111 s.
Because we do not have good data about the distribution of
F(t), for simplicity we assume that failures arrive indepen-

Parameter | Default value | Comment

Average Uav = 1.25% Request-average uavailability varies dently with exponentially distributed interarrival times. Testing
unavailability (> 30sec.) from .4% to 7.4% in different data sets thi ti ith bett ilabilit isode d ti dat
Time to R(t) =1 — 19¢70-35 | Appears heavy-tailed. Truncated Pareto IS assumption wi €ler avallabllity episode duration data
recover MTTR = 609 sec. (max 500,000) used to give finite MTTR. is important future work.
T

Time to F(t)=1- e 38111 Data ambiguous. i i ; ;
failure MTTF = 48111 sec. | Exponential distribution assumed. Ol..ll’ an_alySIS Of dlSCOﬂn_eCtIOH_ Ioggtlon Sques_tS thatboth stub
Location Stc: 25% All Tocations significant. and in-middle disconnections significantly contribute to overall

. e Ratio varies across traces. unavailability. However, our analysis also finds significantly dif-

ferent fractions at different traced locations. For the experiments
where disconnection location is considered (Sections IV-B and

erage unavailability rate in most of the data sets. Given that fr-C ), we assume a default ratio of near-source to in-middle
these data sets the source and destination nodes were seldtBgar-destination disconnections of 1:2:1, and we examine the
from the same collection of traceroute hosts, we speculate tRgPSitivity of the results as we vary these ratios.

the near-destination unavailability rates reported above are
more representative of the stub network disconnection rate than

the near-source rates. .. .. This section studies two classes of techniques for improving
Overall, we observe that both stub network and interior d'@'nd-to-end service availability by masking network unavail-

connections contribute significantly to unavailabilitybutthatthgbi"ty. Client-independence techniques provide a (possibly
relative prevalence of interior compared to stub failures Variﬁ%graded) version of a service using local resources when the
across traces. A Chi-square test of the frequencies [35] fails [y, e server cannot be contacted. Routing and connectivity
support the null hypothesis that all eight traces exhibit the Sar{'éechniques use alternate network paths to route around failures.
ratio of stub-to-middle disconnections at even the 1% Conﬁ'These experiments focus on two goals. First, they seek
dence level, suggesting that the environments measured by fhe, .aniify the potential effectiveness of these techniques at
traces do, in fact, differ. Qualitatively, Paxson2, Paxson2-ng,,,ying service availability. In order to provide information
and uw3 appear dominated by interior disconnections; Paxsoln + 5 broad range of techniques, our experiments abstract
Paxsonl-na, and uwl have similar amounts ofinteriorcomparggj(,j‘y implementation details and, thus, provide an upper
to stub disconnections; and the other traces are dominatedt}&md on the techniques’ effectiveness. The second goal of our

stub disconnections. experiments, therefore, is to quantify the impact of factors may
limit specific instantiations of these techniques.

IV. MASKING NETWORK UNAVAILABILITY

D. Synthetic Model

Based on the analysis above, we develop a simple synthetic Client Independence
unavailability model that we use to evaluate end-to-end strate-p range of client-independence techniques are available.
gies for masking network unavailability. Table IV summarizes
key parameters.

Because the Paxson traceroute data sets are Poisson
distributed and include both “temporary” and “persistent”
disconnections, we draw on them to set our default average
unavailability for the simulations in Section IV, where we use
a default average unavailability of 1.25%. This means that a
given pair of nodes is unable to communicate 1.25% of the
time due to network failures lasting 30 s or longer. In our
above analysis of the trace data sets, we find that the average
unavailability rate can vary significantly, so our experiments
also vary the average network unavailability to evaluate the 3)
sensitivity of our results to this parameter.

Our analysis in Section I1I-C2 suggests that unavailability
event durations for events lasting longer than 30 s are well mod-
eled byR(t) = 1—19¢=98%, The average duration of this Pareto
function is unbounded. For our simulations, we use this func-
tion, but in order to ensure a finite mean duration and to allow

1) Caching. Caching hides network and server failures by
serving requests from a nearby cache rather than a distant
server [17].

2) Relaxed consistency and push-updatefRelaxed con-
sistency can improve availability by allowing caches to
serve stale data during failures rather than requiring the
cache to use (unavailable) current data. Alternately, under
a push-updates protocol [25], [37], servers may update
cached copies before clients request the new versions.
Push-updates, thus, improve the chance that a cache will
contain current data during a disconnection.

Prefetching. Prefetching brings objects close to a client
before the client accesses thehhoarding, a form of
prefetching in which a user identifies groups of ob-
jects to fetch, is effective for disconnected operation in
file systems [20], and the Microsoft Internet Explorer
browser implements a hoarding option for Web pages.
Server push[14], [21], [42] can be thought of as a form

us to calculate a MTTF, we truncate the distribution at 500 000 s.
This truncated Pareto distribution has a MTTR of 609 s.

As noted in Section IlI-C-3, our analysis of the data do not
provide tight bounds on the time to failure distribution function
F(t). In order to make the MTTF consistent with the average
unavailability and MTTR selected above, we use the equation

of server-directed prefetching. Note that prefetching is
more aggressive than the push-update approach. Push-
update only distributes new versions of objects that have
already been referenced by a cache, while prefetching
can distribute unreferenced objects in order to avoid
compulsory misses.
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TABLE V sufficient state or programs or both for the cache to mask dis-
WEB ACCESSTRACE PARAMETERS connections. Our defauihstall_timeis 100 s. During then-
Workload | Date [ Chients | Servers | Sessions stall_time clients and proxies must access the service from de-
Squid-P__ | 3/28/00-4/03/00 1 131193 | 1557875 mand-cached data or via the origin server.
Squid-C 3/28/00 107 52526 403235 H : : H :
BUD T3S TI0% ; i e If the network remains up during an entire session, the simu-

BU-C 1/17/95-5/17195 33 4614 68949 lator classifies the session B Failure For sessions in which
the network is unavailable for part or all of the session, the sim-
ulator examines the objects referenced in the session and classi-
4) Replication of active objects Several researchers havdies the session as follow€ache Hitif all requests are for fresh
proposed systems in which objects may be cached eched objectsStale Hitif all requests are for demand-cached
replicated and then executed [2], [4], [9], [19], [38], [40]objects and if some of those objects require updates from the
These techniques may provide ways to extend the beserver;Hoardable Degradedf the install_timefor the service
efits of caching, relaxed consistency, application-specifitas completed before the network unavailability event begins
adaptation [29], and prefetching to the significant fractioand all requests are for cachable objects but some Digs;
of Web services that are not cachable. namic Degradedf the install_timehas completed before the
This set of experiments examines the potential effectivend¥ginning of the network unavailability event but not all session
of using these client independence techniques to improve f#ta are cachable; afdil if the install_timehas not completed
bustness of Internet services by transfornfaitpd sessionthat ~ at beginning of the network unavailability event and either some
are interrupted by network disconnections inegraded ses- data are not cachable or some data are cache misses.
sionsthat are served locally. Clearly, the relative advantage of For these experiments, we set the failure-location distribu-
degraded sessions over failed sessions will vary from serviden to make all failures in-middle failures, and we conduct five
to service: some services can provide full service while discoffials with different random seeds for the network unavailability
nected, others can provide tolerable service across short disgp@del and graph the mean and standard deviation of results. We
nections, and still others require continuous on-line commuriiescribe improvements to service unavailability in terms analo-
cation with a remote site to be effective. To cope with this widgous to the common definition of “speedup” [16]
range of service behaviors, this experiment does not attempt to
quanufy the benefit of Qegraded service over failed service; in- improvement=
stead it seeks to quantify how often services have the option to Uavpew
use caching, relaxed consistency, prefetching, or mobile exten-
sions to improve their robustness to network disconnections. 2) Results: First, we examine the effectiveness of these gen-
1) Workload and Methodologyln addition to the avail- eral techniques as well as the extent that installation time limits
ability model described in Section lll, the simulator uses twimprovements. The axis of Fig. 5 shows the fraction of ses-
sets of Web access traces to represent Internet service aceigsss classified in the categories listed above on a logarithmic
patterns. Table V summarizes key parameters for these tragesile so that equal intervals reflect equal improvements to av-
We examine both the Bol Squid trace described earlier anérage unavailability. The axis shows thénstall_timefor each
four-month trace taken at clients at Boston University [7]. Thiservice, also using a log scale, and each graph shows these re-
trace is old, but it includes client cache hits, and the client-IBults for a different workload. When installation times are short,
mappings are not changed over the trace period. We examihe combined effect of all techniques is to improve average un-
both traces from the point of view of a proxy shared by a#vailability by at most factors of 14.4 (Squid-P), 15.4 (BU-P),
clients in the trace (Squid-P and BU-P) and from the point @7 (Squid-C), and 5.22 (BU-C) for the four workloads com-
view of individual client machines (Squid-C and BU-C) withpared with the average unavailability that would be encountered
no shared proxy. Because the Squid traces change the clienifl@ach request were sent to the origin server.
mappings daily, we only look at the first day of Squid-C. The improvements available from demand caching appear
For our simulations, we post-process the traces to group Bmall (improvements to average unavailability of 1.1, 1.6, 1.1,
dividual accesses intsessionsWe define a session as a se@nd 1.4 for either caching or caching plus relaxed consistency
of accesses from a client (-C traces) or proxy (-P traces) t@apush-updates). Note that the Squid workload’s lower level
single server in which the maximum gap between successi&ches may hide sessions that only reference cached data,
requests is 60 s. Our figure of merit for availability is the fraccausing us to understate the benefits of caching. Conversely,
tion of sessions that complete without interruption. Our simghe BU trace are not filtered by caches, but they are old and
lator uses trace information to classify the objects as cachablay reflect a workload that is unrealistically easy to cache. It
or uncachable and to identify when objects change. It assunseems likely that caching’s benefits lie between these values.
that each simulated client (-C traces) or proxy (-P traces) has an contrast with demand caching, aggressive prefetching
infinite cache that stores all objects accessed previously in figs caching may achieve significant improvements for those
simulation. services where prefetching is feasible; the simulations indicate
To evaluate prefetching and active objects without knowirigpper bounds of 3.0, 6.2, 1.8, and 4.0 for this combination.
the details of each service, we use the simulation parariteter The only limiting factor to active object replication in this
stall_timeto represent the amount of time from the first accessodel is our assumption that each service requires different
by a client or proxy to a service until the service has downloadedtension code and data, and that extensions cannot be down-

Uavorig
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loaded until a service is first accessed. Under these assumptions
improvements to average unavailability are limited to about an
order of magnitude for these traces because if the network is
down when a service is first accessed or during the first
stall_timeof accesses, no code and data are available to mask the

Fraction of Sessions

Fraction of Sessions

failure. These “compulsory misses” also limit the prefetching

line in these graphs. If compulsory misses and initialization
times are ignored, or if a longer trace were used to reduce com-
pulsory misses, prefetching could provide improvements in av-
erage unavailability of at most 3.7, 9.7, 4.7, and 12.2 and repli-
cation of active objects could, in principle, provide at least de-

graded service up to 100% of the time.
The potential benefits gradually fall as installation time in-

creases. At a 10000-s installation time, the upper bound Bif.6. Session results as average network unavailability varies for the Squid-P
raorkload. Each region between two lines represents the fraction of sessions that

availability improvements are 11.0, 11.1, 2.0, and 4.2. This o be handled by the specified teehniaus,

sult is promising: it suggests that services that must downlo
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significant amounts of state to provide acceptable disconnected
service may have the opportunity to do so.

These data suggest the improvement in session average unavail-
Next, we examine the sensitivity of our results to the urability provided by caching, prefetching, and replication of ac-
derlying average network unavailability. Fig. 6 shows sessidine objects are relatively insensitive to the underlying network
results as we vary average network unavailability by reducingpavailability between average network unavailability probabil-
the time between failures and leaving the unavailability duréties of 0.0125% and 12.5%. At average network unavailabili-
tion distribution unchanged. Due to space limits, we includés below that, the traces are so short that relatively few failure
only the graph for the Squid-P workload. The results for aflvents occur, and our results have too much variance to reach

0.0001 0.001 0.01 01
Average Network Unavailability

four system configurations/workloads are qualitatively similadefinitive conclusions.
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vidual serversinthe BU-P trace. We ran our experiment 50 times
with different random seeds for the failure model and track av-
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g Gache Hit Sessions-~ erage session unavailability for each server across the runs. Each
g T §§ . S heavy line shows the cumulative distribution of the fraction of
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-;:; sy Hoardable Degraded Sessions dicated by ther axis value. Note that the histograms for the dif-
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ferent techniques were computed separately so that the collec-
tion of machines at, say, the 90th percentile of cache improve-
ment may be a different set of machines than at the 90th per-
centile of prefetching improvement.

Dynamic Degraded Sessions -

Failed Sessions

0.001

1 0 100 1000 o000 100000 10406 In these traces, the bottom 15%—25% of services receive
Number of Services Replicated . . . . .

5 little or no benefit from client independence techniques, about

() 50% improve by a factor between 1 and 10, and 10%-20%

Fig. 7.‘ SeSSiOE avgrags unavailabililyy versus numbir ?f cachec:c Ser\li'@:eive improvements over a factor of 10. Furthermore, al-

ensions. rg":]cdIef%;?heestg:gﬁet&”fec'ﬁﬁ;Li‘_’r(ziesnéiig_; Eﬁﬂ'ﬂg S¢S5iGugh caching alone generally provides little improvement,
there are a few services for which caching can improve average
unavailability by more than a factor of two.

The experiments above suggest that to significantly improveThe primary factor determining the improvements provided
overall service availability, services may need to resort {g 3 service by the replication of active objects strategy is the
prefetching and mobile extensions rather than relying §pularity of the service. Services that are visited more often
caching alone. Unfortunately, these techniques can dramafie proportionally less likely to suffer a compulsory miss during
cally increase the demand for resources at a client, proxy, Dhetwork failure. This relationship is shown in the light line in
network. A key limiting factor, therefore, may be how manyig 8 which plots the number of visits in our trace to the service
resources a cache can devote to each hosted service and f§Mesponding to the axis bucket.
many services a cache can simultaneously host. Fig. 7 showgijnally, we examine the maximum duration requirements for
session results when the simulated clients and proxies maintgignt-independent techniques to improve service availability to
only a finite number of local copies of prefetched services angkferent degrees. Fig. 9 shows the service improvement as we
mobile extensions with MFU policy to evict the rest; results fahcrease the maximum disconnection time that client-indepen-
LRU replacement and exponentially decaying average MRynt techniques support. For both the Squid-P and (not shown)
are similar but not shown. For all four workloads the reSUITﬁU_P proxy traces, we see one order of magnitude improve_
are qualitatively similar, but due to the differing number ofnent at 10000 to 100000 s. This means that in order to im-
services accessed by each of these workloads, the cache gigge average service unavailability by an order of magnitude,
needed for full benefits is largest for Squid-P, and successivghé system must mask some failures lasting tens of thousands of
smaller for BU-P (not shown; see [10]), Squid-C (not showreconds.
see [10]), and BU-P. These experiments suggest that to take full advantage of client

Next, we evaluate the sensitivity of different services to diindependence for improving availability, client and proxy vir-
ferent client-independence techniques. In the previous set of &xal machines must be scalable to handle hundreds or thousands
periments, we averaged across all Web services to evaluate tbésimultaneously downloaded extensions in order to replicate a
availability improvements after applying unavailability maskingignificant fraction of accessed sites. Furthermore, some of the
technigues. We now explore the benefit that different individuakrvices may require large amounts of system resources to mask
services could receive. Fig. 8 shows the cumulative distributitang failures. We examine the resource management challenges
function of average unavailability improvements for the indiposed by such a workload in separate studies [5], [41].
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B. Network Routing As in our analysis of client independence techniques, we ab-

In this section, we evaluate strategies that route around nayact impIemeptat_ion details of routing-based techniques and
work failures. To simplify the analysis, we classify strategig@cUs Onboundingimprovements thatthey may provide. Several
into two broad categories: 1) network rerouting and 2) servgctors may limit these improvements in practice. For rerouting
replication and selection. The following discussion states tRatégies, overheads include the failure detection time and route
type of failures masked by each strategy, how we model tA@itching time. For server replication and selection, there are
strategies in our experiments, and the service availability ifiOSts to maintain extra replicas and overheads to select alterna-
provements that the strategies yield. tive servers. These overheads vary for differentimplementations

1) Rerouting. Rerouting techniques still send requests to tHf{d may vary for different services (e.g., depending on failures,
service’s origin server, but they may use alternate routg@nsistency, and semantics). Therefore, as with client-indepen-
when failures occur. Examples of rerouting techniquéience techniques, clients may experience sessions handled by
include dynamic routing [22] and overlay networks [1]'€routing or server replication as “degraded” with the signifi-
[34]. In the terminology of this paper, these techniquegnce of the deterioration varying on a service-by-service and
address in-middle failures, but will be ineffective againdfplementation-by-implementation basis.
near-source and near-destination failures. 1) Workload and MethodologyWe use the same workloads

2) Server replication and selection This category of tech- and similar methodology as for the client-independence exper-
niques directs requests to replicas of the origin serversents. We group requests into sessions and classify each net-
when the origin servers are unreachable. Several file sygork disconnection by its location: near-source, in-middle, or
tems [33] and databases [26] provide replicated servergar-destination. We run each experiment 25 times and plot the
to handle failures in distributed environments. In the comrean with 90% confidence intervals.
text of the Web, mirror sites with “manual failover,” as 2) Results: In our first set of experiments, we vary the frac-
well as replicated servers with anycast [3], [13], [47] cation of disconnections in each location category. These graphs
support server replication. This class of techniques cane omitted due to space limits. Across a wide range of ratios,
resolve near-destination and in-middle failures, but is ithe findings are as expected: the fraction of unavailability events
effective against near-source failures. that each class of techniques can mask varies in proportion to the
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Fig. 11. Session average unavailability versus network average unavailability (combined techniques). Each region between two lines rerastarisoth
sessions that can be handled by the specified technique. (a) Squid-P. (b) BU-P. (c) Squid-C. (d) BU-C.

fraction of disconnections assigned to a particular location c#ed by near-source failures. Because these techniques fail in dif-
egory. For example, when in-middle disconnections account ferent circumstances, they may be combined to reduce average
50% of all disconnections, techniques that mask in-middle disystem unavailability.
connections but not others can improve average unavailabilityFor example, Fig. 11 shows session average unavailability
by about a factor of two. under a combined scheme in which network unavailability is
Given that the traces exhibit significant fractions of failures ahasked by caching, prefetching, and active objects and in which
each location, Amdahl’s Law limits improvements from routingrefetching and installation of active objects use anycast to ac-
based strategies that do not address failures in all three logass replicated servers. This combined approach thus masks all
tions. More study is needed to quantify the prevalence of neggfures except near-source failures during prefetching or ac-
source disconnections precisely, but the preliminary result @fe object installation time. Fig. 5 suggests that these results
our study suggests that near-source failures account for at Ieggtpe relatively insensitive to increasesiistall_time Overall
10%~-20% of disconnections, probably limiting routing-bas&g,provements in BU-P for this combined scheme are factors
techniques to less than an order of magnitude improvemegf.117, 100, 18.2, and 24.5 for average network unavailability

As noted above, our methodology is likely to “”dereStimaB?obabilities of 0.0125%, 0.125%, 1.25%, and 12.5%, respec-
near-source failures.

fo_r the_ BU traces are quall_t atively 5|m|!ar _[10]' As with theshow qualitatively similar results for the other workloads.
client-independence strategies, the relative improvements to av-
erage unavailability provided by these techniques remains stable

over a wide range of underlying average network availabilities. V. CONCLUSION

Although Internet services can deploy highly available
servers, deploying highly availabkervicesremains problem-

Client-independence techniques are limited by compulsoaic due to connectivity failures. A typical client may not be
misses and installation time, and rerouting techniques are liable to reach a typical server for 15 min per day.

C. Combined Techniques
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In this paper, we develop a network unavailability model and12]
an evaluation strategy for studying broad classes of techniques

for coping with connectivity failures.

(13]

These experiments suggest that end-to-end techniques have

the potential to significantly improve WAN service avail-
ability. Although the gains from traditional caching appear

[14

]

limited, the potential gains from more aggressive techniquegis]
such as prefetching, content distribution, and replication of

active objects, appear substantial, at least for those services

whose semantics allow for disconnected operation and whoges)

data footprints are small enough for replication. Quantifying 17

the fraction of services that meet these requirements is a[n ]
important topic for future work, as is developing a scalable
extensible proxy design that can host hundreds or thousands Bf]

downloaded extensions [5]. [
We speculate that for most services, the path to high end-to-

end availability most likely runs through a combination of ap-
proaches. For example, routing-based techniques might be usgal
to reduce the impact of compulsory misses on mobile exten-
sions, while mobile extensions might be used to mask networkll
failure classes not addressed by a particular routing strategy.

(22]
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