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Design of Cellular Networks with Diversity and
Capacity Constraints

Peter Kubat, Member, IEEE, J. MacGregor Smith, and Calvin Yum

Abstract—This paper presents three mathematical models for
network design of cellular networks. The models reflect varying
degrees of complexity.

Model #1 is a 1-period fixed-link capacity model. Three heuris-
tics are used for solving this problem. All the heuristics first
use linear programming relaxations to yield the near-optimal
integer solution, then use then clever rounding-schemes to find the
final solution. The three heuristics are compared with an integer
branch-and-bound algorithm to show the efficacy of the heuristics
and the speed with which they achieve their solution. The first
heuristic is the best. An Appendix presents a detailed algorithmic
description of the first heuristic.

Model #2 allows the capacities of the links to vary. This is a
much more difficult mathematical programming problem, yet cer-
tain features of the problem reveal valuable characteristics of the
linear programming relaxations. Two heuristics are generated; the
first heuristic is superior to the second. The heuristics are com-
pared with an optimal branch-and-bound algorithm.

Model #3 presents a multi-period demand problem. This is a
very complex problem and, while no heuristics are developed and
no computational experiments are shown, the structure of the final
problem is similar to models #1 & #2; thus linear programming re-
laxations should be a viable strategy for its solution.

Index Terms—Branch and bound, cellular, heuristics, telecom-
munications network design.

I. INTRODUCTION

Acronyms

CDMA code division multiple access
DSL digital signal level
DS0 DSL 0–64 Kb/s
DS1 DSL 1–1.544 Mb/s, DS1 = 24DS0
DS3 DSL 3–44.736 Mb/s, DS3 = 28DS1
GSM global system for mobile communication
H1-1 Heuristic 1-1, etc
IP integer programming
IP optimal solution of IP
LIUB least integer upper bound
LP linear programming
MSC mobile switching center
PSTN public switched telephone network
SONET synchronous optical network
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TDMA time division multiple access
WAN wide area network

A typical cellular system has 3 main parts:

• mobile units,
• cell sites,
• a MSC.

Calls originating and/or terminating at the mobile units, are con-
nected to a cell site over a radio link (analog, or digital for newer
systems). From the cell, the call proceeds to the MSC for pro-
cessing and switching. The switch transfers the call to its desti-
nation—either another mobile unit, or to a PSTN for delivery to
a wired telephone terminal. Between the cell site and the MSC,
the connection is over terrestrial, digital transmission lines (usu-
ally lines), or over private digital microwave. The lines
are typically leased from a telephone company, the microwave
transmission systems are usually purchased and owned by the
cellular operator.

The cell sites, containing radio transceivers, antennae, and
interconnection transmission equipment, are strategically lo-
cated to cover the geographic area served by the cellular service
provider. The cell locations depend upon several factors, e.g.:

• technology (analog, TDMA, GSM, CDMA),
• cellular radio system frequency band (900 MHz,

1800 MHz),
• geography of the site (these factors influence radio prop-

agation characteristics and thus radio coverage),
• the regional demographic,
• census data,
• highway systems and commuting habits (these are driving

the system traffic engineering requirements),
• location of neighboring cells,
• location of cells of competing providers,
• cost of real estate.

The radio capacity of each cell (in terms of number of calls
that it can handle simultaneously) is determined by

• subscriber “demographics and calling patterns,” which,
in conjunction with the radio technology and antenna
system, eventually translate into the number of radio
modules engineered to guarantee a specific grade of
service (for example, 2% blocking during cell’s busy
hour),

• the number of DS0 channels assigned to carry the voice
payload and radio control to the MSC.

Since every cell must be connected to the MSC, the logical
connection must be a star, and historically, the early interconnect
(physical) networks for cellular systems had a star topology as
well. However, as more cell sites are added to the network and
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Fig. 1. Example topologies with diversity constraints.

the cost of the facilities increases, this star architecture is no
longer cost effective because it does not provide for any sharing
of transmission facilities. To reduce the transmission costs for
large networks, hubbing centers are created at some suitable lo-
cation (typically a cell site) to provide traffic concentration, and
subsequently sharing bigger transmission pipes (e.g., DS3, large
microwave), to use the economies of scale.

Hubbing is clearly more cost efficient; however, there has
been a concern about the reliability of the interconnect network,
since when the network is a tree. A failure of a high capacity
trunk could wreak havoc on the entire cellular network. To avoid
outages, cellular companies have adopted a variety of alterna-
tives, including the use of—

• extensive backup facilities,
• physical diversity of paths,
• leasing transmission capacity on the self-healing SONET

rings [2].

The problem in this paper addresses the partial traffic protec-
tion in the interconnect network for a cellular system.

Assumptions

1) The location of current (existing) and future cells and a
backbone network of large capacity are known.

2) The topology of the backbone is known. It is a tree
topology (or a forest); the tree(s) root is at the MSC.

3) Cells are connected either to the backbone or directly to
the MSC.

4) To guarantee a partial survivability, some cells could be
required to split equally their traffic over at least 2 com-
pletely-disjoint paths.

5) is an integer.
6) Hubs do not generate demand.
7) Hubs are Steiner points.
The problem is to find

1) The optimal homing of the cells to the backbone hubs.

2) The optimal backbone link capacity to meet the required
survivability criterion and minimize the total network
cost.

Section II briefly reviews the literature on cellular network
design for general network topologies.

Section III defines the fundamental network design problem
addressed in this paper for tree topologies and its decomposition
into 3 separate sub-problems.

Section IV addresses the first problem:

P1) Single-period demand, fixed link capacity.

It develops a linear programming relaxation approach for
solvingP1 and presents computational experiments to demon-
strate the effectiveness of our heuristic approach.

Section V addresses the second problem:

P2) Single-period demand, variable link capacity.

It develops a heuristic approach (related to the approach devel-
oped in Section IV) for solvingP2.

Section VI extendsP1 & P2 toP3, and addresses some open
questions.

II. L ITERATURE REVIEW

The proliferation of corporate WAN handling voice, data,
e-mail, Internet, and other telecommunication applications, ex-
tensive choice of service providers, selection from many com-
plex and exotic transmission technologies and systems, with an
ever increasing pressure to contain costs’ provides a real chal-
lenge to network designers. This, in turn attracts attention to
modeling and cost optimization of networks in the private set-
ting. Some models and cost optimizations for private networks
have been already considered in the literature, e.g., [1], [6],
[10]. More details on the design of telecommunication networks
using SONET rings and the corresponding reliability consider-
ations are in [9], [11], [12].

Interconnection-access networks for cellular systems are pri-
vate networks, but they are unique in many ways. The cells
must deliver the traffic to the MSC; this implies that the optimal
topology must be a tree (which makes the problem easier). There
is a complex choice of transmission technologies (e.g., leased

vs.private microwave), cost of concentrators, and multi-year
planning horizon (which makes the design problem harder). The
cellular network design is further complicated, by expanding the
network to accommodate a phenomenal growth of cellular sub-
scribers (growth about 100% a year is not unheard off), yet the
cell demand is not always increasing (the reason for this is the
cell splitting and cell moving, which in turn, can cause a de-
crease in traffic load for some cells).

In contrast to the traditional telephone networks, the cellular
network topology can be very flexible and dynamic—both in
the topology and link capacity, which can change periodically.
This is because the leased transmission facility is simple to add,
terminate, or move to another destination; it is also relatively
easy to add and relocate a microwave facility. Refs. [5], [8] con-
sider modeling and solving a capacity expansion of a star-star
network over a given planning time horizon to meet projected
traffic demand at minimum cost. The expansion plan specifies:

• where and when to place concentrators in the network,
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• what type of concentrator to use at each of the hubs,
• which cell sites to connect to each of the hubs,
• which cells to connect directly to the MSC,
• what facilities to use on each of the links.

III. PROBLEM DESCRIPTION

Notation

: cell nodes of cardinality
: hub nodes of cardinality

(not including the root node)
trees: ; for any two trees,

, Trees are rooted at node #0 in MSC
: all hub nodes plus the root node

annual cost of interconnect network
fixed cost of connecting cellto hub ($/year)
decision variables
predefined data coefficients; if link is on
the path from the root to hub, otherwise
fixed demand in DSO circuits for each cellto be
delivered to root node #0
diversity requirement at cell;
capacity (in DS0 circuits) for link
directed graph with two set of nodes

This paper addresses the partial traffic protection in the inter-
connect network for a cellular system. The topology of the back-
bone is given and it is a tree topology (or a forest); the tree(s)
root at node 0—the MSC. Cells, which generate(in DS0),
send this demand to one or more tree nodes (excluding the root)
or to the MSC (root) directly using leased (DS1) circuits.
Each cell is assigned protection or routing diversity requirement

. For diversity 2, the paths are required to be completely dis-
joint and the demand is split equally. Equivalently, diversity 2
means that 50% of the traffic will be routed to 1 backbone node
and the other 50% will go to some other node (or MSC). This
makes sense, since most of the cell sites are unmanned, and the
DS0 circuits are directly hardwired to the outgoing transmission
facilities. When a cell-node link fails, only 50% of the traffic is
lost. If a cell connects to 2 hub nodes, the nodes must be on 2
different trees. Diversity 1 means no diversity at all.

The objective then is to find a cell-to-hub interconnection net-
work and backbone link capacities so that the diversity require-
ment is met and the cost of interconnection is minimized.

Design of cellular networks with SONET rings and partial
survivability was studied in [2]. This paper examines a problem
that is different from the design problem [2] in both its modeling
aspects and the proposed heuristic solution. Specifically, [2] ad-
dresses the problem of the optimal homing arrangement where
there is a single reliable SONET ring of given capacity and the
MSC is attached to the ring.

• Cells with diversity 1 can home either directly 100% of
the traffic demand to the MSC (not using the ring capacity
at all) or to a ring node.

• Cells with diversity 2 must home to either 2 distinct ring
nodes (using the ring capacity for 100% of the traffic de-
mand), or to home 50% of the traffic directly to the MSC
and the other 50% of the demand to a ring node (loading

Fig. 2. Example topologies with diversity constraints.

the ring with only 50% of the cell traffic demand). Thus,
there is only a single capacity constraint for the ring.

This paper considers an optimal homing arrangement
without the ring restriction and under a more general setting.
Cells can home to any node, including the root (MSO), but
for cells with diversity 2 (or higher), the cells must home
not only to the two distinct nodes but these nodes must be
on different trees. This restriction adds a complicating set of
constraints. Different amounts of capacity are allowed on each
tree branch. This makes the problem quite realistic, because
the backbone can carry some other traffic as well, and only a
certain portion of the total link capacity can be allocated to
the cellular application. Thus, the formulation must consider
that the diversified traffic traverses different trees, and all the
capacity constraints are met. There are very many constraints;
thus the problem is much more complicated.

Problem Decomposition

Three basic mathematical models/problems are considered in
their order of complexity:

P1) Single-Period Demand, Fixed Link Capacity.
P2) Single-Period Demand, Variable Link Capacity.
P3) Multi-Period Demand, Variable Link Capacity.

IV. P1: SINGLE-PERIOD DEMAND, FIXED LINK CAPACITY

The capacity in each link is fixed.
By convention, #0 is the site index for the MSC. In practice,

the most likely values for diversity are 1 and 2. The is
derived using relevant tariffs and could depend on.

The indicate the homing assignments and .
The data coefficients, , are predefined; seeNotation. Also,
nota bene, since we deal only with trees, then there are at most

paths emanating from each cell node to the root. The problem
is stated formally as:

Minimize (1)
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subject to

for all (2)

for all (3)

for all (4)

for all (5)

We want to pick homing assignments so thatis minimized.
Since the link capacity is fixed, the cost of the link capacity is
irrelevant for the homing assignments. Under diversity,is
divided into equal parts, rounding up, if necessary.

• Constraint set (2) ensures that the diversity requirement of
each cell is met.

• Constraint set (3) ensures that the link capacity is not ex-
ceeded.

• Constraint set (4) are tree diversity constraints—ensuring
that if then only one branch is homed to a given
tree (thus, if the link connecting to the root fails, not all
the traffic is lost).

A. Heuristic Design Concept

While seemingly innocuous,P1 is very difficult to solve to
optimality for a large problem, because it is NP-Complete [3].
Thus, to provide a reasonable, powerful approach, use

• LP relaxations to calculate a noninteger solution, then
• clever rounding schemes to ensure a reasonable integer

solution.

It can be shown (but is not done here) that the LP relaxation is
equivalent to a Lagrangean relaxation of the problem [4].

LP relaxation is a vital means of providing a tight lower
bound on the integer programming problem, and we designed
our heuristic through a series of LP subproblems. We also ex-
plored the development of a heuristic approach using minimum
spanning trees, but it was inferior to the LP relaxations.

B. Heuristic Approach

To develop some heuristics based on LP relaxations, a process
is defined whereby these relaxations lead to efficient integer so-
lutions in a reasonable computation time. Thus we developed
3 closely related heuristics, all based on LP relaxations:H1-1,
H1-2, H1-3.

1) Heuristic 1-1: An Overview: The purpose ofH1-1 is
to find a completely feasible solution forP1, then improve the
solution. A completely feasible solution in this case is one that
contains only integer ; fractional are not acceptable.

• a complete link between and .
• an empty (free) link between and .

This heuristic is constructed usingMathematica, which was
chosen because of its

• innate ability to allow random generation of the data and
problem parameters,

• graphic capabilities,
• incorporation of LP.

This heuristic consists of essentially 4 phases:

• Phase 1: Construction of direct links to the MSC.
• Phase 2: Link switching process.
• Phase 3: Capacity searching process.
• Phase 4: Cost minimization.

We use a matrix data structure, , which has cell rows
and hub columns to track

• each , and
• the feasibility of the solution.

During each of the 4 phases of the heuristic, matrix is
augmented. The matrix built at phaseis then carried to phase

.
Phases 1–3 are designed to convert a noninteger solution

obtained from solving the associated LP into an integer (or a
completely feasible) solution. By moving and cutting some of
the links in the current solution, the link capacities are freed by
a certain amount for the possible addition of new but complete
links, while maintaining both capacity & diversity constraints.
However, there is a trade-off with a higher total cost of the
homing assignment. After changing the link assignment in
phases 1–3, an integer solution might be obtained. If so, phase
4 is then used to decrease the current total cost by changing a
cell-MSC link to a cell-hub link whose cost is cheaper, while
preserving the constraints.

C. Algorithm ofHeuristic 1-1

This algorithm finds a feasible solution and then improves
it for P1. Appendix A contains a detailed pseudo-code of the
algorithm steps. A Mathematica program of these 4 phases is
available from the authors upon written request.

1) Phase 1: Construction of Direct Links to MSC:The pur-
pose of phase 1 is to group and cut 1 or units of in-
complete links (demand) in rowof , and then transfer this
amount of demand to the new link, , a link connecting cell

and the MSC, given that link is free (i.e., ) or
partially free. Without a capacity constraint in any link ,
this process applies to any cell regardless of its diversity degree.
ThisSub-Algorithm-1 begins the process from the first cell
until the last cell.

Table I is an example in this section to illustrate the heuristic
process. The first matrix is a noninteger solution of a
Problem 1 in which there are 12 cells and 5 hubs (hub 0 is the
MSC).

In matrix , Table I, rows 4, 7, 10 have fractional and
among links [4, 0], link [7, 0], link [10, 0], only link [10, 0] has
room for extra demand. Therefore, by sending extra
units of cell 10 demand to link [10, 0], then link [10, 0] becomes
complete (i.e., ) while the fractional becomes
0. A new matrix, , Table I is formed.

2) Phase 2: Link Switching Process:The purpose of phase
2 is to free up the link capacity of hub by transferring 1 unit
demand of cell from link to link , given that
link is free ( ); i.e., change from 1 to 0
while becomes 1. The goal is to complete an originally
fractional link by putting extra demand into the link.
When the new remaining link capacity of hub is good
enough to fit the extra amount of demand in link , i.e.,
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TABLE I
MATRIX M ON THE LEFT—MATRIX M ON THE RIGHT

TABLE II
MATRIX M ON THE LEFT—MATRIX M ON THE RIGHT

(unit demand of cell ), then group
unit demand of cell from other fractional link(s) in row
of , cut the link(s) and form a complete link . This
Sub-Algorithm-2:

1) Determines all the possible candidates and calculates the
additional cost of cutting & constructing the links for each
candidate.

2) Assigns the extra cost to the associated variable which is
identified as .

3) Chooses the minimum and performs the link as-
signment & removal, if possible, by checking the capacity
constraints.

4) Updates with a large nonzero value, .
5) However, some link assignments and removal might not

be performed due to the previous changes of links, i.e., a
link has been constructed during any previous iter-
ation in phase 2.

6) Repeat steps 1–5 until all are .
7) Form a new matrix .

End_Sub-Algorithm-2

Return to the example in Table II. In , the link [12, 4] is
complete, and link [12, 0] is free. Because the cut of link [12,
4] provides enough capacity for an increase of or
61/75 units of cell 7 demand in the link [7, 4], then link [12, 4]
is removed, link [12, 0] is built, and link [7, 4] becomes com-
plete while fractional becomes 0. is then formed; see
Table II.

3) Phase 3: Capacity Searching Process:The purpose of
phase 3 is to search for a hub linkwhose remaining capacity is
good enough for 1 unit demand of cell. If so, without violating

tree constraints and with a minimum extra cost, 1 unit of frac-
tional link are cut and link is constructed. This
Sub-Algorithm-3

1) Starts searching at cell 1,
2) Changes the link assignment if possible.
3) Repeats steps 1–2 until the last cell has been checked.
4) Forms matrix ; see Table III.

End_Sub-Algorithm-3
Return to the example in Table III. Cell 4 has fractional links.

Since the remaining capacity of hub 4 is larger than 1 demand
unit of cell 4, link [4, 4] is built and fractional and are
erased.

4) Phase 4: Cost Minimization:The purpose of phase 4 is to
compensate the increase of the homing assignment cost which
resulted from processing phases 1–3. When the linking cost
of link is cheaper than the linking cost of link and
without violating both diversity & capacity constraints, then by
moving the demand of cellfrom link to link , there
is a cost saving .

This idea is obtained from the 1-for-1 (swing) heuristic [1]
and the 1-optimal heuristic [7].Sub-Algorithm-4 functions
in a way similar to the one of phase 2. It first determines all
possible candidates and assigns each one with a variable. It
then picks the maximum and performs the link assignment
and removal. One or more are then changed to 0.Sub-
Algorithm-4 repeats the selection process until all
. A final matrix , Table IV, is obtained.
To complete this example, see matrix Table IV, cost re-

ductions of homing assignments are gained by moving

• link [4, 0] to link [4, 3],
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TABLE III
MATRIX M ON THE LEFT—MATRIX M ON THE RIGHT

TABLE IV
MATRIX M ON THE LEFT—MATRIX M ON THE RIGHT

• link [6, 0] to link [6, 2],
• link [9, 0] to link [9, 2].

is the final solution ofH1-1, see Table IV. The value of the
noninteger LP solution of model 1 is $39 625, andH1-1 provides
an integer solution with a value of $42 083. Section IV-F pro-
vides more detail on the performance of this heuristic.

D. Heuristic 1-2

As mentioned in Section IV-B,H1-2 is based onH1-1. The
major difference between these two alternative heuristics is in
phase 1. InH1-1, phase 1 constructs direct cell-MSC links. The
process continues until there are no more cells that simultane-
ously have incomplete links to the hubs and an empty (or in-
complete) link to the MSC. During each iteration a complete
direct cell-hub link is built. The idea is equivalent to adding a
new constraint, , at every iteration. Rather than per-
forming the link assignment statically, phase 1 ofH1-1 is refined
by re-solving the linear program every time a new constraint is
included in the problem. By doing this, a more dynamic change
of link assignment is gained from the previous noninteger so-
lution and the bounding property of the LP relaxation is tight-
ened more strongly than with the original phase 1. Hence, this
concept, compared with phase 1, can lead faster to the integer
solution. This re-solving process is repeated until there are no
more new constraints that can be added: same process termi-
nation criterion as the original one in phase 1.H1-2 is again a
4-phase algorithm which performs the LP re-solving in its first
phase, and is followed by phases 2–4 ofH1-1.

TABLE V
PROBLEM SIZES

E. Heuristic 1-3

One important issue aboutH1-2 is its algorithm running time.
As one anticipates, due to the iterative LP re-solving process,
when the network instance is large, the running time is appre-
ciably longer. The trade-off between the ability of re-capturing
the LP bounding property and the heuristic processing time re-
quires attention.H1-3 is, therefore, developed as a reasonable
compromise toH1-1 andH1-2.H1-3 re-solves the LP after only
iteration #1 of phase 1, but does not re-solve the LP after every
iteration in phase 1. The rest of the heuristics steps follow from
H1-1.

F. Experimental Results

To test the heuristics, randomly generated problem instances
were created within the Mathematica program. Because of the
nature of Mathematica, it was relatively straightforward to per-
turb the cost parameters and location of the cell & hub nodes so
that random problems were generated which also allowed for a
graphic output of the network topology.

Table V illustrates the general experimental design where
three classes of problems were generated. The relatively small
instances & topologies assure that the Integer Programming
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TABLE VI
CLASS I

TABLE VII
CLASS II

model allows computing an optimal solution for comparison.
All experiments were carried out on a Dell Dimension XPS
H266MHz computer with Windows NT operating system.

G. Class I Results

Table VI(a) represents the value of the heuristic solutions for
the problems in class I along with the value of the optimum
integer solution. Table VI(b) illustrates the fraction deviation
from the optimum solution for each of the heuristics. For this
class of problems,H1-2 fares pretty well on solution quality, yet
experiences a doubling of CPU time overH1-1. The CPU times
for the optimal integer LINDO solution were not precise enough
to yield values lower than 1 second, which explains the 0’s in
column 5 of Table VI(b). In later table runs, with larger problem
instances, this discrepancy does not appear.

H. Class II Results

Table VII(a) represents the value of the heuristic solutions
for the problems in class II along with the value of the optimum
integer solution. Table VII(b) illustrates the percentage devia-
tion from the optimum solution for each of the heuristics. For
this second class of problems,H1-3 does very well, compared
to H1-1 andH1-2; yetH1-1 runs the fastest.

I. Class III Results

Table VIII(a) represents the value of the heuristic solutions
for the problems in class III along with the value of the optimum
integer solution. The IP solution was not computable within a
reasonable amount of time forP1. Table VIII(b) illustrates the
percentage deviation from the optimum solution for each of the
heuristics. For this final class of examples,H1-1 emerges as the
best approach.

Table IX presents the summary experimental results across
all 3 heuristics and all problem classes.

V. P2: SINGLE-PERIOD DEMAND VARIABLE LINK CAPACITY

This P2 formulation allows for variable link capacities. The
variable link capacity problem is stated formally as:

Minimize (6)

subject to

for all (7)

for all (8)

for all (9)

for all (10)
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TABLE VIII
CLASS III

TABLE IX
SUMMARY —AVERAGES OF THEEXPERIMENTAL RESULTS

for all (11)

In this P2, is a constant, e.g., , the capacity of the
DS3 link but any nonnegative integer will do; is the number
of units to purchase; is the fixed cost per unit.

A. Heuristic

As seen in the problem formulation,P2 has the integral prop-
erty [4]; thus a series of LP relaxations can be used to generate
effective lower bounds as inP1. Section V-D demonstrates that
the LP relaxation always yields an integer LP lower bound on
the variables, which proves to be a very effective heuristic
procedure.

Running some of the computation experiments provided
some very interesting insights forP2; those 3 properties are
presented here without proof:

Property 1: P2 guarantees all integer , but the most likely
variables, , are nonintegers.

This property is related to the integrality property of the LP
relaxation, but unfortunately, we do not see a straightforward
proof. In all our experiments to date, the were 0, 1 which
eventually makes the heuristic solution process based on LP re-
laxations very powerful.

Property 2: Among a set of , any which is the closest
to its LIUB, , tends to be (but not necessarily) rounded up to
that LIUB in the optimal solution.

This property has a fortunate side-effect for our LP-based
heuristics.

Property 3: If we round up the sum of the (fractional), the
resulting integer value always equals the sum of integerin the
optimal solution.

This property is interesting and led us to explore a valid in-
equality to include with the LP relaxation process.

Table X illustrates these 3 properties we have found
experimentally.

Two alternative heuristics (H2-1, andH2-2) for P2 are pro-
posed, to yield an integer solution for.

B. Heuristic 2-1

A straightforward approach to obtain a feasible solution
for P2 is to take the fractional from model 2 and get their
LIUB: . When a fractional is increased its LIUB, extra
link capacity is added into the Hub-MSC link, the constraint
of integer is no longer violated. This gives an easy upper
bound on the optimal integer solution value. UsingH2-1 one can
anticipate that the homing assignment will remain unchanged
while the monthly interconnection cost becomes higher.

An alternate approach is to pattern a heuristic similar toH1-1
where the closest is replaced by its LIUB, then resolve the
LP, sequentially solve LP relaxations in time until an in-
teger solution is achieved. We did not implement this heuristic
modification because the simplest version worked well enough.

C. Heuristic 2-2

Property 3 in Section V-A shows how to determine the
total number of link units that should be purchased. To use
this insight well, a new constraint (cutting plane) is constructed
which indicates that the sum of must equal the rounded-up
sum of fractional from model 2. In addition, similar to the
re-solving idea inH1-1, another new constraint is added into the
problem every time before the re-solving process takes place.
This is a constraint of forcing one to take an integer value,
where is chosen based on the idea ofProperty 2 (the

, whose value is its LIUB). The re-solving process terminates
when all are integers.

D. P2: Experimental Results

Table XI(a) represents the value of the heuristic solutions for
the problems in class I along with the value of the optimum
integer solution. Table XI(b) illustrates the fraction deviation
from the optimum solution for each of the heuristics.

Table XII(a) represents the value of the heuristic solutions for
the problems in Class II along with the value of the optimum
integer solution. Table XII(b) illustrates the fraction deviation
from the optimum solution for each of the heuristics.H2-1 per-
forms better thanH2-2.
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TABLE X
EXAMPLE—PROPERTYRESULTS

TABLE XI
CLASS I (HEURISTIC SOLUTIONS)

TABLE XII
CLASS II: (HEURISTIC SOLUTIONS)

Table XIII(a) represents the value of the heuristic solutions
for the problems in Class III along with the value of the
optimum integer solution. Table XIII(b) illustrates the fraction
deviation from the optimum solution for each of the heuristics.
H2-1, again, performs better thanH2-2.

E. Large-Scale Experiments forP2 andH2-1

Three large cellular network problems are examined; only
H2-1 is applied.H2-2 is not considered due to the anticipated
long run times. The results are in Table XIV.



174 IEEE TRANSACTIONS ON RELIABILITY, VOL. 49, NO. 2, JUNE 2000

TABLE XIII
CLASS III (H EURISTIC SOLUTIONS)

TABLE XIV
CLASS III: L ARGE-SCALE PROBLEM RESULTS

VI. P3: CONCLUDING REMARKS

This last section

• discussesP3, but does not attempt to solve it,
• addresses some open questions,
• presents further insights.

A. Multi-Period Demand, Variable Link Capacity

P1 & P2 are generalized; demand varies over time. The main
difference betweenP2 and P3 is the addition of the discrete
time-period index which unfortunately increases the dimen-
sions of the problem. The formal statement is:

Minimize

(12)

subject to

for all (13)

for all (14)

for all (15)

for all (16)

for all (17)

Again, by examining the constraint structure it seems that the LP
relaxation process will be beneficial in providing lower bounds
on the optimal integer solution to the multi-period programming
problem.

B. Problem Variations

Another variation onP2 is incorporating a mix of infinite and
finite capacities on the links. The link costs can be incorporated

from one hub to another hub ; the problem then becomes a
nice Steiner problem.

APPENDIX

P1 HEURISTIC DETAILS

A. Phase 1

• Step 1: Given a noninteger solution ofP1. Form the ma-
trix to record the current noninteger solution obtained
by solving the linear programming problem. Element

is or a fractional value less than 1; these
represent respectively, a complete, empty, or incomplete
“link between cell and hub is constructed.” MSC is
hub 0. Set .

• Step 2: While , if cell has incomplete links to hubs
(fractional in row of matrix ) and if
(link between cell and MSC is free or partially free), then
construct a complete link ( becomes 1) and sub-
tract (1 - original ) units of fractional in row (re-
move incomplete links). The idea is to move (1 - original

) units of cell demand from those incomplete links to
link . If the original is 0, then the total demand
transfer is 1. Set .

• Step 3: A new matrix is formed.

B. Phase 2

• Step 1: Bring in matrix from phase 1. Set .
• Step 2: While , if cell has incomplete links to the

hubs ( ) then set counter = 0.
• Step 2.1: counter = counter + 1.

• Step 2.1.1: Set .
• Step 2.1.2: . If link is free and

if link is complete and if one demand
unit of cell is larger than 1 demand unit of
cell then multiply by , and

xc

• Step 2.1.3: Process until . Repeat step
2.1.2.

• Step 2.2: If counter number of fractional ’s in
row 1, then go to Step 2.1, else .
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• Step 3: While xc go to step 3.1.
• Step 3.1: Choose xc xc . If link is

free and if link is complete, then go to step
3.2; else go to step 3.3.

• Step 3.2: Construct link , remove link ,
complete link by setting it to 1, and subtract

) from the other fractional in row .
• Step 3.3: Set xc .

• Step 4: Matrix is then formed.

C. Phase 3

• Step 1: Bring in matrix . Calculate the remaining link
capacities.

• Step 2: Set xc . Set .
• Step 3: While , if cell has incomplete links to hubs

( ) set .
• Step 3.1: . If the remaining capacity of hub

is larger than 1 demand-unit of celland if the
remaining capacity of any hub between huband
MSC (on the same tree of hub) is larger than 1
demand unit of cell , then calculate xc:

xc

is the index of a fractional number,
is the number of fractional

• Step 3.2: Proceed until (not including MSC).
Go to step 3.1.

• Step 3.3: If xc , then go to step 3.4, else
go to step 3.5.

• Step 3.4: If the remaining link capacity of hubis
larger than 1 demand unit of cell, then set frac-
tional in row to 0. Construct link . Up-
date the remaining link capacities. Reset .

• Step 3.5: Set .

D. Phase 4

• Step 1: Bring in . If at least 1 element in is not an
integer, then Stop; else go to step 2.

• Step 2: Calculate the current remaining link-capacities.
Set cs .

• Step 3: While , ( ). Set .
• Step 3.1: ( ). If link is com-

plete, and if link is free, and if the remaining
link capacity of hub is larger than the unit demand
of cell , and if , then calculate:

cs

• Step 3.2: Proceed until (not the MSC). Go to
step 3.1.

• Step 3.3: Set .
• Step 4: While maximum cs . Find maximum cs ,

cs .
• Step 4.1: If the remaining capacity of hubis larger

than 1 demand-unit of cell , then go to step 4.2; else
go to step 4.4.

• Step 4.2: If the remaining capacity of any hub be-
tween hub and MSC (on the same tree of hub)

is larger than 1 demand-unit of cell, then go to step
4.3; else go to step 4.4.

• Step 4.3: If the construction of link does not
violate the tree constraints, then cut link and
construct link and update the link capacity
of hub and set all cs in row to 0; else go to
step 4.4.

• Step 4.4: Set cs .
• Step 5: Matrix is formed.

End ofP1 Heuristic
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