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TWO TREE-BASED ALGORITHMS FOR NETWORK
SPARE CAPACITY DESIGN

HOVHANNES A. HARUTYUNYAN, CALIN D. MOROSAN AND
YUNZAN ZHANG!

Abstract. Survivable network design has become increasingly impor-
tant due to the need for reliable communication service. Its main pur-
pose is to provide cost-efficient spare capacity reservation at certain
survivability level. In this paper, we introduce two pre-planned path
restoration algorithms for spare capacity design in mesh-like networks.
First one is a spanning tree based algorithm, which needs less spare
capacity than the well known hierarchical tree algorithm while keeping
the same level of restorability. The second algorithm is a cycle based
tree algorithm with backup parents and extra cycle edges, which forms
cycles with the original spanning tree edges. Simulation results show
that this algorithm works much better than the other two algorithms on
restorability. Both algorithms have time complexity O(n>) and space
complexity O(n2), where n is the total number of nodes in the network.
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INTRODUCTION

In the modern society, we are increasingly becoming dependent on the exchange
of information. Multimedia communication, Internet, on-line banking, e-commerce
are just a few examples of how we use networks daily. To assure reliable network
communications we need to design a survivable network with suitable spare ca-
pacity which enables fault recovery via rerouting of traffic in the the case of a link
failure.
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Traditionally, there are two components that make a network survivable, namely
network design and capacity allocation, and traffic management and restoration [6].
Network design and capacity allocation techniques try to cover system level fail-
ures, such as network link failures, by placing sufficient spare capacity on suitable
spare links. The most important component, spare capacity design, is a design
of the spare topology and the corresponding capacity, such that the network can
reroute the demand if a link is lost due to a failure. Traffic management and
restoration procedures seek to redirect the network load when the failures occur,
such that the connections affected by the failure are restored while maintaining
the network stability. These two components are complementary and cooperate
to achieve reliable service upon failures.

Some metrics have been introduced in order to measure the spare capacity
design and restorability performance:

— Restorability is the percentage of the working bandwidth that could be
restored in case of a single link failure.

— Work capacity is defined as the sum of work bandwidth on every link using
the shortest path routing.

— Spare capacity is defined as the sum of spare capacity on every spare link.

Based on the time necessary to allocate spare resources, survivability strategies
can be classified as pre-planned and dynamic methods. The pre-planned methods
have the advantage of guaranteing the survivability upon predicted failures. How-
ever, the pre-planned resources will be wasted if none of the predicted failures
happens. The dynamic methods try to allocate the spare resources when the fail-
ure happens. In order to achieve better resource utilization the dynamic methods
use the spare resources in case of failure. However, the survivability assurance
is jeopardized because the requested resource might not be available when it is
needed upon failures. In [11] these two methods have been employed together in
order to obtain a good restorability. They called it “2-step” restorability, which
means that the total restoration ratio is achieved when all useful preplanned paths
are first exploited, followed by needed on-demand search for available paths using
unallocated links plus unneeded spare capacity.

According to the initial locations during the rerouting process, restoration
schemes are classified as link restoration and path restoration. In general, path
restoration is known to require less spare capacity than link restoration. No
matter which method is used, one is interested in determining a set of backup
routes for the working traffic and the amount of spare capacity required on the
backup routes to achieve a desired level of traffic restoration for a specific failure
scenario. A typical goal is to determine a spare capacity placement such that
all the normal traffic can be restored for any single failure in the network [1].
Some related work in network restoration and capacity allocation can be found
in [15], [3], [5], [9], [12], (13], [7], [10], and [3].

Mesh-restorable networks, as opposed to ring-like networks, can be more capacity-
efficient in terms of the total spare capacity. The term mesh-restorable refers to the
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ability of the rerouting mechanism to exploit an arbitrary topology, in a mesh-like
(as opposed to ring-like) way, using diverse rerouting mechanisms [11].

Mesh-based survivability is more capacity-efficient because each unit of spare
capacity is reusable in many ways, across many different failures. Signals that
pass through a failed link can be rerouted through many diverse paths. In this
way, when considered in total, mesh-based survivability design requires smaller
amounts of spare capacity compared to ring-based networks. In general, rings
use very simple mechanisms and are thus simple and fast, but relatively capacity-
inefficient. Mesh networks can be far more capacity-efficient, but need considerably
longer time for a path restoration.

For spare capacity design, a spanning tree is a tree which covers all network
nodes, with only one path between any node-pair. Network trees, a kind of mesh-
restorable networks, can provide more flexibility and present a tradeoff between
the restorability and restoration time. Trees are local by nature since adding or
dropping a branch would have a limited impact over the other branches, as opposed
to rings or cycles which lose their ring form if a single link on the ring is removed.
This fact provides a potentially better chance in trees for dealing with multiple
failures [4].

The two tree-based algorithms proposed in this paper use both pre-planned and
path restoration methods. The basic spanning tree based algorithm generates a
maximum spanning tree with backup parents, which needs much less spare capac-
ity than the hierarchical tree algorithm presented in [4] while the restorability is
similar to the hierarchical tree algorithm. The cycle based tree algorithm with
backup parents and extra cycle edges produces a basic tree topology with backup
parents and extra cycle edges, which form cycles with the original spanning tree
edges. This one can get much higher restorability than the hierarchical tree algo-
rithm or the spanning tree algorithm, with a reasonable increasing spare capacity.
The most important objective is to achieve as large as possible restorability with
a small spare capacity used. The two proposed algorithms have time complexity
O(n?®) and space complexity O(n?).

1. DEFINITIONS AND BACKGROUND

Formally, any network can be modelled as an undirected graph G = (V, E),
where V' is the set of nodes and FE is the set of edges. Two nodes v € V and
v € V are adjacent if there is an edge e € E, such that e = (u,v). We also say
that node w and v are neighbors. A node in the graph represents a station in a
network and an edge represents a connection between two stations, which creates
a link between that two nodes. Throughout this paper we will use the terms edge
and link interchangeably. A path p in a graph G = (V| E) is a sequence of nodes
of the form p = vy, vs...v,, (n > 2), in which each node v; is adjacent to node v;41,
where 1 <7 < mn — 1. The path p is also a sequence of edges or links. The length
of a path is the number of edges in the path. A graph G = (V| E) is said to be



4 TITLE WILL BE SET BY THE PUBLISHER

connected if there is a path between any two nodes of G. We will assume that the
network is represented by a connected graph.

The restorability is the percentage of restorable network traffic upon failures. In
our work, we use the average fraction r;)‘f;‘;ﬁ‘;iﬁf ttrilaff f’;icc Cfl‘;paaccii;y to denote the term
restorability, over all possible one link failures. For the pre-planned restoration
algorithm, this measures the effectiveness of a pre-planned method in providing
immediate restoration without requiring any on-demand computation for dynamic
restoration.

We compare our algorithms to a previous known tree-based algorithm called
hierarchical tree algorithm, which is presented in detail in [4]. This is a pre-planned
path restoration algorithm and is based on the idea of a hierarchical protection tree,
which provides hierarchical layering of the network. It defines a special spanning
tree on which the links are arranged in a hierarchical form based on link capacity.
In a hierarchical tree, the connection between every node and its parent has a
larger bandwidth than the link between the same node and its children. The time
complexity of the hierarchical tree algorithm is O(n?) [14].

2. THE SPANNING TREE ALGORITHM

In this section we introduce a typical maximum weight spanning tree algorithm,
which can achieve very close restorable percentage level when compared to the
above hierarchical tree algorithm, but needs much less spare capacity. We will
further refer to it as S.T. algorithm.

How to define the weight on each link to generate pre-planned trees? First
approach can be based on the number of times the spare links can contribute to
the shortest backup path. Initially, we find each shortest backup path upon any
one-link failure and than we compute the total needed spare capacity according
to the shortest backup path and assign this value to the associated weight for
every link. Another possibility is to simply assign the work capacity on the link
as its weight, then to construct the maximum spanning tree according to the
obtained weights. Using these two methods on some examples we achieve similar
restorability. Since the first method needs more time and space, we select the
second one in our algorithms.

Once the link weights are assigned, Prim-Jarnik’s algorithm is executed to find
a maximum weight spanning tree, instead of a minimum weight spanning tree.
A single copy of this tree is then configured as a pattern (unit link capacity) for
the spare network. For any single link failure, we use this pattern to find all the
existing spare backup paths and to assign the needed spare capacity to the spare
capacity of the link. In the last step, following every possible one link failure, the
maximum needed spare capacity per link will be the final designated link spare
capacity.

Formally, the S.T. algorithm can be written as follows:
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Input: graph G(V,E)
Output: spare capacities of FE

assign the weight of each link according to its work capacity
compute maximum spanning tree T’
assign unit link capacities for each link of T
for each link of 7T considered as a failure
find all the existing spare backup paths
assign the spare capacity to that link
end for

If the network spare topology is already given, it can be used as the basic spare
graph. We can select our maximum spanning tree from all the possible connected
spare links; the assigned link weight is its spare capacity limit. Then we assign
to the tree link enough spare capacity (not exceeding the limit) in order to get a
higher restorability. If we only have the network topology itself, we will use the
S.T. algorithm to get the spare capacity allocation. In this paper, we consider the
problem where no spare resource has been allocated in the given network topology.

As in the hierarchical tree algorithm, further refereed as the H.T. algorithm, we
also use backup parents as a possible selection for another available backup spare
path. Unlike the H.T. algorithm, the table with backup parents is established after
the construction of the spanning tree, keeping the unused adjacent nodes for every
node, including their parent node. Only the nodes that lose their connection to
the tree need to switch to backup parents for other possible valid backup paths.

3. THE CYCLE BASED TREE ALGORITHM

In this section, we present a new algorithm that we called cycle based tree
algorithm for spare capacity design, further refereed as the S.T.C. algorithm. This
algorithm can guarantee a higher restorability than the spanning tree algorithm
described above. The algorithm constructs a spanning tree with backup parents
and extra cycle edges that form cycles with the original spanning tree edges. The
backup parents table keeps the unused adjacent edges for every node. When the
nodes lose their connection to the tree, they can be switched to backup parents for
other possible valid backup spare paths. More specific, we add some redundant
edges in order to the basic spanning tree to achieve higher restorability with very
little additional time complexity and reasonable increased spare capacity.

Here, one traffic demand between each node-pair in the network was assumed.
The allocated working capacity for each network was determined using shortest
path routing. The required spare capacity is calculated to provide fault tolerance
for any single link failure.
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3.1. THE S.T.C. ALGORITHM DESCRIPTION

The S.T.C. algorithm is similar to the S.T. algorithm described in Section 2.
In the first step we compute the shortest working path for every pair of node-pair,
using Dijkstra’s algorithm, assuming that the cost of every link on the traffic path
is equal to 1. Then we get the connection cost table by calculating every link cost
on every working path. Having this table we construct the maximum spanning
tree with backup parents as in Section 2. In order to add the extra cycle links, we
sort all the links in descending order into an array, according to the cost on every
link. We take out the largest link from the sorted edge array and check whether it
will form a cycle with the other links already on the tree. If there is no cycle, then
we add this link to the tree-based links array. Otherwise we check whether we can
add this link as a cycle link, that is, no other cycle contains this link. If it can be
a cycle link, then we add it to the cycle links array. We continue until there are no
more links in the sorted array. Now we can get the spare path for every node-pair
just from the spanning tree. These are the original spare paths. In the next step
we get backup parents for every node by checking all adjacent nodes and links and
recording the nodes with maximum bandwidth as backup parents. In this way we
obtain backup spare paths for every node-pair from the spanning tree links, the
backup parents table, and the cycle links array.

Formally, the S.T.C. algorithm can be written as follows.

Input: graph G(V,E)
Output: backup spare paths, backup parents table, link cycles

Step 1: for each node-pair (v,u) in G
compute the shortest working path of (v,u) using Dijkstra
end for
for each link e in F
compute the weight of e according the working path
end for
Step 2: sort the links from F in an array A, in descending order
Step 3: for each link e in A
add e to the tree T
if e forms a cycle
if e belongs only to one cycle

add e to T
delete e from A
end if
end if
end for

Step 4: for each node-pair (v,u) in T
get the spare path of (v,u) from T
end for
Step 5: for each node v in V
get backup parents of v
end for
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Step 6: for each node-pair (v,u) in T
get the backup spare path
end for
construct the cycle edge array

From all the edges of the spanning tree and the cycle edges, we can get the
cycles using the BFS (Bread First Search) algorithm. Then, from these cycles,
we have two backup spare paths for every node-pair appeared on any cycle. We
cannot guarantee that every node-pair on the graph will have these backup spare
paths but if the node-pair has the backup spare paths, it means that it can cover
any single failure on their working path or spare path due to the two link-disjoint
backup spare paths. This is why we added these cycle edges to the spanning tree
described in Section 2.

When we compute the restorability upon any possible single link failure we
should check whether there exists another available spare path for any affected
working path. If such a path exists, then the traffic on this working path is
protected by the spare topology. The spare path can be derived either directly from
the tree, from the the tree and the cycle edges, or from the backup parent table.
Finally, using the definition described in Section 1, we compute the restorability
given by the S.T.C. algorithm.

3.2. TIME AND SPACE COMPLEXITY

We denote by n and m the number of nodes, respectively edges, in graph.
Following the formal description of the S.T.C. algorithm we have the complexity
of each step:

Step 1: O
Step 2: O
Step 3: O
Step 4: O(n
Step 5: O(n?
Step 6: O(n?).

Considering m € O(n?) in the worst case we conclude that the time complexity
of the S.T.C. algorithm is in O(n?). Since we have to store each pair of nodes the
space complexity is O(n?).

4. SIMULATIONS AND COMPARISONS

For the tree-based algorithms used for simulation one traffic demand between
each node-pair in the network was assumed.
We have used 4 topology models to do the simulation:

- Mesh-like topology, randomly generated, using three different values for
the number of nodes (10, 17, and 21)
- AS-level Internet topology (generated by Inet) with 100 and 200 nodes
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TABLE 1. Mesh-like random topology

Graph Model : mesh-like random topology
Work Restorability Spare Capacity
n | Cap.| H.T. | S.T. S.T.C. | H.T. | S.T. S.T.C.
13 | 324 | 74.69% | 74.69% | 89.82% 181 181 207
17| 640 | 74.53% | 74.53% | 86.56% 351 336 368
20| 966 79.30% | 79.30% | 90.06% 545 526 569

TABLE 2. AS-level Internet topology

Graph Model : AS-level Internet topology (generated by Inet)

‘Work Restorability Spare Capacity

n Cap.| H.T. | S.T. | S.T.C. | H.T. | S.T. | S.T.C.
200 | 83112 | 63.13% | 63.16% | 77.79% 21053 15582 32759
200 | 83470 | 62.32% | 62.34% | 82.60% 20497 15490 40732
200 | 83582 | 61.80% | 61.81% | 81.46% 19908 12991 38740
200 | 83902 | 61.95% | 61.98% | 88.90% 19810 13292 47279
200 | 84774 | 61.24% | 61.25% | 78.21% 19726 14045 33224

- Random plat topology (generated by GT-ITM) with 100 and 200 nodes
- WAN-MAN-LAN topology (generated by Tiers) with 100 and 200 nodes

The detailed description of these models can be found in [2].

We have run over 200 experiments using the four topology models above. In
Tables 1-4 and Figures 1-3 we present some of the results for each model. The
meaning of the abbreviations in the tables is:

- n — The number of nodes in the graph

- H.T. — Hierarchical Tree algorithm with backup parents

- S.T. — Spanning Tree algorithm with backup parents

- S.T.C. — Spanning Tree algorithm with backup parents and cycle edges

The confidence interval for restorability varies from 0.3% to 5% for different models
and different number of nodes. The confidence interval for spare capacity varies
from 0.5% to 6% for different models and different number of nodes. For the seek
of clarity we show the confidence interval only for the results regarding the S.T.C
algorithm in Figures 1-3.
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TABLE 3. Random plat topology

Graph Model : Random Plat (generated by GT-ITM)

‘Work Restorability Spare Capacity

n Cap. | H.T. | S.T. | S.T.C. | H.T. | S.T. | S.T.C.
100 | 22660 | 88.66% | 88.27% | 90.82% 5238 5046 5430

100 | 23086 | 88.16% | 87.66% | 90.68% 5873 5475 5899

100 | 24468 | 88.79% | 88.22% | 91.14% 6515 6391 6839

100 | 28676 | 84.22% | 83.77% | 86.65% 8518 8308 8734

100 | 31088 | 81.31% | 81.49% | 84.57% 10120 10065 10533

TABLE 4. WAN-MAN-LAN topology

Graph Model : 3 levels—-WAN-MAN-LAN (generated by Tiers)

‘Work Restorability Spare Capacity

n Cap.| H.T. | S.T. | S.T.C. | H.T. | S.T. | S.T.C.
100 | 51546 | 44.24% | 45.48% | 45.98% 33576 | 33871 34021
100 | 52540 | 39.26% | 41.51% | 41.66% 40703 | 41117 41148
100 | 55688 | 36.34% | 37.86% | 38.16% 31467 | 32319 32421
100 | 56762 | 31.81% | 34.28% | 34.43% 33410 | 35124 35184
100 | 56922 | 31.55% | 33.76% | 33.91% 34609 | 35229 35272

Within the same complexity, for every model, the spanning tree algorithm needs
almost always less spare capacity than the hierarchical tree algorithm. This is
caused by the fact that the spare path in hierarchical tree is sometimes longer
than that of in spanning tree. This tendency can be seen also in Figures 1-3, part
a (left side). Although this difference can reach, in some cases, nearly 35% (Table
2), the differences in restorability are not significant.

Although the restorability and the spare capacity can be very different for var-
ious network models, the restorability of the cycle based tree algorithm is always
higher than the other two algorithms whereas the increased spare capacity is pro-
portional to the increased restorability. This tendency can be seen in Figures 1-3,
part b (right side). Note here that the increasing in spare capacity for AS-level
Internet topology is particularly higher than for the other models.

The network redundancy can have a great effect on the restorability. The dif-
ferences in restorability between the cycle based tree algorithm and the other two
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FIGURE 2. Restorability and spare capacity for random plat
topology (100 nodes)

is bigger in networks having higher redundancy than in networks having lower re-
dundancy. This happens because more redundant edges can generate more cycles,
which means that we can get more possible backup spare paths.

5. CONCLUSIONS
In this paper, we introduce two new spare capacity design algorithms: the span-

ning tree algorithm with backup parents (S.T.) and the spanning tree algorithm
with backup parents and cycle edges (S.T.C.). We compare these algorithms to a
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FIGURE 3. Restorability and spare capacity for WAN-MAN-LAN
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previous known algorithm, namely the hierarchical tree algorithm (H.T.). All of
them can be used as pre-planned path restoration algorithms.

The spanning tree based algorithm needs less spare capacity than the hierar-
chical tree algorithm, improving in some cases with nearly 35% the spare capacity
while the differences in restorability are not significant. The cycle based tree al-
gorithm with backup parents and cycle edges gives clearly better results than the
other two in terms of restorability, with a proportional increased spare capacity.

The restorability and the spare capacity can be very different for various network
models. We used 4 topology models for simulations (mesh-like topology, AS-level
Internet topology, random plat topology, and WAN-MAN-LAN topology). Within
the same complexity, for each model, the restorability of the S.T.C. algorithm is
always higher than the other two algorithms. In one example the difference even
reaches nearly 27%. The time complexity of our algorithms is in O(n?) and the
space complexity is in O(n?).
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