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Abstract— A major factor hindering the deployment of a
fully functional automatic facial expression detection system
is the lack of representative data. A solution to this is to
narrow the context of the target application, so enough data
is available to build robust models so high performance can
be gained. Automatic pain detection from a patient’s face
represents one such application. To facilitate this work, re-
searchers at McMaster University and University of Northern
British Columbia captured video of participant’s faces (who
were suffering from shoulder pain) while they were performing
a series of active and passive range-of-motion tests to their
affected and unaffected limbs on two separate occasions. Each
frame of this data was AU coded by certified FACS coders, and
self-report and observer measures at the sequence level were
taken as well. This database is called the UNBC-McMaster
Shoulder Pain Expression Archive Database. To promote and
facilitate research into pain and augment current datasets,
we have publicly made available a portion of this database
which includes: 1) 200 video sequences containing spontaneous
facial expressions, 2) 48,398 FACS coded frames, 3) associated
pain frame-by-frame scores and sequence-level self-report and
observer measures, and 4) 66-point AAM landmarks. This
paper documents this data distribution in addition to describing
baseline results of our AAM/SVM system. This data will be
available for distribution in March 2011.

I. INTRODUCTION

Automated facial expression detection has made great
strides over the past decade [1], [2], [3]. From initial focus
on posed images recorded from a frontal view, current efforts
extend to posed data recorded from multiple views [4], [5],
3D imaging [6], and, increasingly, non-posed facial behavior
in real-world settings in which non-frontal pose and head
motion are common [7], [8]. With respect to the latter, lack
of well-annotated, ecologically valid, representative data has
been a significant limitation.

In many real-world applications, the goal is to recognize
or infer intention or other psychological states rather than
facial actions alone. For this purpose, both narrowing the
number of facial actions of interest and paying attention
to context may be critical to the success of an automated
system. For example, if one were to apply an automated
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facial analysis system to detect hostile intent in airports, a
very large number of facial actions could occur and the shear
number of permutations that could explain a person’s facial
expression would be far too great to have any confidence in
detecting intention. The range of facial action variability in
this setting is considerable. Hundreds of facial action units
in combinations could occur and their signal value highly
diverse. A target person could be running late, afraid of
flying, upset at leaving a loved one, or agitated over visa
problems or missed connections, among other states. Facial
expression analysis would have to be combined with other
modalities, including speech, in an iterative process to have
confidence in intention detection.

Detection of psychologically meaningful states from facial
behavior alone can be improved by knowing the context (e.g.,
clinical interview or assessment) and number of outcomes.
(say two, i.e. yes/no). With these constraints, the application
of an automatic facial expression detection system could
be very successful. A recent example is that of automatic
smile detection in digital cameras where Whitehill et al.
[8] constrained the goal to detecting only smile or no-
smile. Employing a Gabor filter approach, they were able to
achieve performance of up to 98% on a challenging dataset
consisting of frontal faces spontaneously smiling or not in
various environments, although no inferences were made
about psychological state (e.g., enjoyment) and no temporal
segmenting was required. Other examples of well-specified
problems or contexts in which facial expression detection
would be useful include driver fatigue detection, clinical
status (e.g., symptomatic or not) and approach/avoidance in
consumers (e.g., interested, disgusted or neutral).

A. Painful Motivation

An application that would be of great benefit is that
of pain/no-pain detection [9], [10], [11], [12]. In Atul
Gawande’s recent book entitled ”The Checklist Manifesto”
[13], he notes that massive improvements in patient outcomes
in intensive care unit (ICU) settings have been achieved
through adhering to standardized hygiene and monitoring
per a priori checklists. One of these is pain monitoring,
in which a nurse checks on a patient every 4 hours or
so to evaluate whether they are suffering from pain and
to make any needed adjustments in pain medication that
may be warranted. Pain monitoring especially beyond the
ICU has been hard to implement due to competing demands
on nursing staff. Automatic monitoring could be an ideal
solution.
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Fig. 1. Examples of some of the sequences from the UNBC-McMaster Pain Shoulder Archive: (a) the sequence-level ratings were Observer Rated Pain
Intensity (OPI) = 5, Visual Analog Scale (VAS) = 9, Sensory Scale (SEN) = 11, Affective-Motivational Scale (AFF) = 10, the peak-frame (60) had AU
codes of 6c + 9b +43 which was equal to a Prkachin and Solomon Pain Intensity (PSPI) rating of 6 for that frame; (b) the ratings were OPI = 4, VAS =
6,SEN = 10,AFF = 7, the peak-frame (322) had AU codes of 4a + 6d + 7d+ 12d + 43 which was equal to a PSPI rating of 6 for that frame; (c) the ratings
were OPI=3, VAS=7,SEN=7,AFF=7, the peak-frame (352) had AU codes of 4e + 6a + 7e + 9d + 10d + 25c + 43 which was equal to a PSPI rating of 14
for that frame; (d) the ratings were OPI = 2, VAS = 6, SEN = 8, AFF = 5, the peak-frame (129) had AU codes of 4b + 6c + 12c + 43 which was equal
to a PSPI rating of 6 for that frame.

Outside of the ICU, most pain assessment is via self-
report. Self-reported pain is convenient and requires no
special skills or staffing, but has several limitations. Self-
report is subjective, lacks specific timing information about
whether pain is increasing, decreasing, or spiking, and cannot
be used when patients are impaired. Breathing tubes interfere
with speech, consciousness may be transient, and patients
may yet to have achieved functional speech (e.g., infants).
Over the past twenty years, significant efforts have been
made in identifying such facial actions [14], [15], [16].
Recently, Prkachin and Solomon [16] validated a Facial
Action Coding System (FACS) [17] based measure of pain
that can be applied on a frame-by-frame basis. A caveat on
this approach is that it must be performed offline, where
manual observations are both timely and costly, which makes
clinical use prohibitive. However, such information can be
used to train a real-time automatic system which could
potentially provide significant advantage in patient care and
cost reduction.

Researchers at the McMaster University and University
of Northern British Columbia (UNBC) captured video of
patient’s faces (who were suffering from shoulder pain)
while they were performing a series of active and passive
range-of-motion tests to their affected and unaffected limbs
on two separate occasions. Each video frame was fully
AU coded by certified FACS coders, and both observer
and self-report measures at the sequence level were taken
as well. To promote and facilitate research into pain as
well as facial expression detection, the first portion of this
dataset is now available for computer vision and pattern
recognition researchers. With their particular needs in mind

and through collaboration with CMU and University of
Pittsburgh, the UNBC-McMaster Shoulder Pain Expression
Archive includes:

1) Temporal Spontaneous Expressions: 200 video se-
quences containing spontaneous facial expressions re-
lating to genuine pain,

2) Manual FACS codes: 48,398 FACS coded frames,
3) Self-Report and Observer Ratings: associated pain

self-report and observer ratings at the sequence level,
4) Tracked Landmarks: 66 point AAM landmarks.

This paper documents this database and describes baseline
results and protocol based on our AAM/SVM system.

II. THE UNBC-MCMASTER SHOULDER PAIN
EXPRESSION ARCHIVE DATABASE

A total of 129 participants (63 male, 66 female) who were
self-identified as having a problem with shoulder pain were
recruited from 3 physiotherapy clinics and by advertisements
posted on the campus of the McMaster University. One
fourth were students and others were from the community
and included a wide variety of occupations. Diagnosis of
the shoulder pain varied, with participants suffering from
arthritis, bursitis, tendonitis, subluxation, rotator cuff injuries,
impingement syndromes, bone spur, capsulitis and disloca-
tion. Over half of the participants reported use of medication
for their pain.

All participants were tested in a laboratory room that
included a bed for performing passive range-of-motion tests.
After informed consent and information procedures were
completed, participants underwent eight standard range-of-
motion tests: abduction, flexion, and internal and external
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Fig. 2. Histograms of the pitch, yaw and roll taken from the 3D AAM parameters across the UNBC-McMaster Shoulder Pain Expression Archive database.

rotation of each arm separately [18]. Abduction movements
involve lifting the arm forward and up in the sagittal plane.
In internal rotation, the arm is bent 90 degrees at the
elbow, abducted 90 degrees, and turned internally. External
rotation is the same except that the arm is turned externally.
Abduction, flexion, and internal and external rotations were
performed under active and passive conditions. Active tests
differed from the passive tests in being under the control
of the patient who was instructed to move the limb as far
as possible. Active tests were performed with the patient
in a standing position. Passive tests were performed by a
physiotherapist who moved the limb until the maximum
range was achieved or was asked to stop by the patient.
During passive tests, the participant was resting in a supine
position on the bed with his or her head supported and
stabilized by a pillow. Active tests were performed prior to
passive tests because that is the usual sequence in which they
are conducted clinically. The order of tests within active and
passive conditions was randomized. Tests were performed
on both the affected and the unaffected limb to provide a
within-subject control.

During both active and passive tests, two Sony digital
cameras recorded participants’ facial expressions. Camera
orientation was initially frontal in the active condition, al-
though change in pose was common. Camera orientation
in the passive condition was approximately 70 degrees off
frontal, with the face viewed from below.

A card, listing verbal pain descriptors was available to help
participants provide verbal ratings of the pain produced on
each test. Each card displayed two Likert-type scales [19].
One consisted of words reflecting the sensory intensity of
pain. The other consisted of words reflecting the affective-
motivational dimension. These scales have been subject to
extensive psychophysical analyses, which have established
their properties as ratio-scale measures of the respective un-
derlying dimensions. Each scale had 15 items labelled from
“A” to “O”. The sensory scale (SEN) started at “extremely
weak” and finished at “extremely intense”; the affective-
motivational scale (AFF) started at “bearable” and finished
at “excruciating”. In addition, participants completed a series
of 10cm Visual Analog Scales (VAS), anchored at each end
with the words, “No pain” and “Pain as bad as could be”. The

three scales were completed by participants after each test.
Specifically, after each test, participants rated the maximum
pain it had produced using the sensory and affective verbal
pain descriptors and the VAS.

Offline, independent observers rated pain intensity (OPI)
from the recorded video. Observers had considerable training
in the identification of pain expression. Observer ratings
were performed on a 6-point Likert-type scale that ranged
from 0 (no pain) to 5 (strong pain). To assess inter-observer
reliability of the OPI pain ratings, 210 randomly selected
trials were independently rated by a second rater. The
Pearson correlation between the observers OPI was 0.80,
(p < 0.001), which represents high inter-observer reliability
[20]. Correlation between the observers rating on the OPI and
subjects self-reported pain on the VAS was 0.74, (p < 0.001)
for the trials used in the current study. A value of 0.70 is
considered a large effect [21] and is commonly taken as
indicating high concurrent validity. Thus, the inter-method
correlation found here suggests moderate to high concurrent
validity for pain intensity. Examples of the active portion of
the dataset with the associated self-report measures, along
with the FACS codes and frame-by-frame level pain rating
(see next subsection) is given in Figure 1.

A. FACS coding

Each test was extracted from the video and coded using
FACS [17]. Each facial action is described in terms of one
of 44 individual action units (AUs). Because there is a
considerable amount of literature in which FACS has been
applied to pain expression, only the actions that have been
implicated as possibly related to pain were focussed on:
brow-lowering (AU4), cheek-raising (AU6), eyelid tightening
(AU7), nose wrinkling (AU9), upper-lip raising (AU10),
oblique lip raising (AU12), horizontal lip stretch (AU20),
lips parting (AU25), jaw dropping (AU26), mouth stretching
(AU27) and eye-closure (AU43). With the exception of AU
43, each action was coded on a 5 level intensity dimension
(A-E) by one of three coders who were certified FACS
coders. Actions were coded on a frame-by-frame basis. All
coding was then reviewed by a fourth certified FACS coder.

To assess inter-observer agreement, 1738 frames selected
from one affected-side trial and one unaffected-side trial of



20 participants were randomly sampled and independently
coded. Intercoder percent agreement as calculated by the
Ekman-Friesen formula [17] was 95%, which compares
favorably with other research in the FACS literature.

B. Prkachin and Solomon Pain Intensity Scale

Beginning in 1992, Prkachin [15] found that four actions
- brow lowering (AU4), orbital tightening (AU6 and AU7),
levator contraction (AU9 and AU10) and eye closure (AU43)
- carried the bulk of information about pain. In a recent
follow up to this work, Prkachin and Solomon [16] confirmed
these four “core” actions contained the majority of pain
information. They defined pain as the sum of intensities of
brow lowering, orbital tightening, levator contraction and eye
closure. The Prkachin and Solomon pain intensity (PSPI)
metric is defined as:

Pain = AU4 + (AU6 orAU7) +

(AU9 orAU10) + AU43 (1)

That is, the sum of AU4, AU6 or AU7 (whichever is higher in
intensity), AU9 or AU10 (whichever is higher in intensity)
and AU43 to yield a 16-point scale1. For the example in
Figure 1(a), the peak frame here (60) has been coded as AU
6c + 9b + 43. This would result in a PSPI of 3+ 2+1 = 6.
Similarly in Figure 1(b), the peak frame has been coded as
AU 4a + 6d + 7d+ 12d + 43, which equals 1 + 4 + 1 =
6, as AU4 has an intensity of 1, AU6 and AU7 both have
intensity of 4 so just the maximum 4 is taken and AU43 has
an intensity of 1 (eyes are shut).

The PSPI [16] FACS pain scale is currently the only
metric which can define pain on a frame-by-frame basis. All
frames in this dataset were coded using the PSPI. For more
information on the relative merits of the particular self-report
measures and how they relate to PSPI and FACS, please refer
to [16].

C. Analysis of Distributed Portion of the Pain Corpora

From the entire available UNBC-McMaster Pain Shoulder
Archive, 200 sequences from 25 different subjects in the ac-
tive portion of the dataset has been prepared for distribution
to the research community. From these 200 sequences there
is a total of 48398 frames that have been FACS coded and
AAM tracked. The inventory of the total number of frames
which have been coded from each AU and their intensity is
given in Table I. The number of frames and the associated
PSPI score is given in Table II. From this, it can be seen that
83.6% of the frames had a PSPI score of 0, and 16.4% had
frames in which had a PSPI of score ≥ 1.

Examples of this data are given in Figure 1 and it is
apparent that there is some head movement that occurs dur-
ing these sequences. To quantify how much head movement

1The intensity of action units (AUs) are scored on a 6-point intensity scale
that ranges from 0 (absent) to 5 (maximum intensity). Eye closing (AU43)
binary (0 = absent, 1 = present). In FACS terminology, ordinal intensity is
denoted by letters rather than numeric weights, i.e., 1 = A, 2 = B, . . . 5 =
E.

TABLE I
The AU inventory on the UNBC-McMaster Shoulder Pain Archive, where

the frequency of each AU and its intensity is given along with the total.

Note that for AU43, the only intensity is A (i.e. they eye can only be open

or shut).

AU A B C D E Total

4 202 509 225 74 64 1074
6 1776 1663 1327 681 110 5557
7 1362 991 608 305 100 3366
9 93 151 68 76 35 423
10 171 208 63 61 22 525
12 2145 1799 2158 736 49 6887
20 286 282 118 0 20 706
25 767 803 611 138 88 2407
26 431 918 265 478 1 2093
43 2434 – – – – 2434

TABLE II
The inventory on the UNBC-McMaster Shoulder Pain Archive according

to the Prkachin-Solomon Pain Intensity (PSPI) pain metric, where the

frequency of each pain intensity is given.

PSPI Score Frequency
0 40029
1-2 5260
3-4 2214
5-6 512
7-8 132
9-10 99
11-12 124
13-14 23
15-16 5

occurred, we used the 3D parameters from the AAM to
estimate the pitch, yaw and roll [22]. The histograms of these
parameters are shown in Figure 2. In terms of pitch, yaw
and roll the mean was -0.38, -0.21 and -0.23 degrees and
the variance was 23.58, 40.82 and 33.28. However, these
parameters differed quite a bit when a person was in no-
pain (PSPI=0) and in pain (PSPI≥1). When the PSPI was
equal to 0 the variance in terms of pitch, yaw and roll was
22.69, 37.03 and 29.19. When the PSPI was ≥ 1, the variance
increased to 26.72, 55.61 and 48.52 which suggested that
head movement coincided with painful facial expression.
Overall, close to 90% of all frames in this distribution were
within 10 degrees of being fully frontal and over 99% were
within 20 degrees from the fully frontal view.

At the sequence level we show the inventory of some
self-report and observer measures. Table III shows the in-
ventory of the visual analogue scale (VAS) and observer
pain intensity (OPI) measures for the 200 sequences. On
the left side of the table, it can be said that there is a nice
spread of VAS measures from 0-10. With the OPI measures,
there is slightly less than half with no observable pain. For
the sequence-level experiments, we will be using the OPI



TABLE III
The inventory on the self-report and observer measures of the

UNBC-McMaster Shoulder Pain Archive at the sequence level. The

self-report Visual Analogue Scale (VAS), ranging from 0 (no-pain) to 10

(extreme pain) and the Observed Pain Intensity (OPI), ranging from 0

(no-pain observed) to 5 (extreme pain observed).

VAS Frequency OPI Frequency
0 35 0 92
1 42 1 25
2 24 2 26
3 20 3 34
4 21 4 16
5 11 5 7
6 11 Total 200
7 6
8 18
9 10
10 2
Total 200

ratings so as we can have our automatic system to mimic that
of a human observer. The affective and sensory self-report
measures across the 200 sequences will also be available in
the distribution.

III. AAM LANDMARKS
In our system, we employ an Active Appearance Model

(AAM) based system which uses AAMs to track the face and
extract visual features. In the data distribution we include the
66 point AAM landmark points for each image. This section
describes how these landmarks were generated.

A. Active Appearance Models (AAMs)

Active Appearance Models (AAMs) have been shown to
be a good method of aligning a pre-defined linear shape
model that also has linear appearance variation, to a previ-
ously unseen source image containing the object of interest.
In general, AAMs fit their shape and appearance components
through a gradient-descent search, although other optimiza-
tion methods have been employed with similar results [23].

The shape s of an AAM [23] is described by a 2D
triangulated mesh. In particular, the coordinates of the mesh
vertices define the shape s = [x1, y1, x2, y2, . . . , xn, yn],
where n is the number of vertices. These vertex locations
correspond to a source appearance image, from which the
shape was aligned. Since AAMs allow linear shape variation,
the shape s can be expressed as a base shape s0 plus a linear
combination of m shape vectors si:

s = s0 +

m∑
i=1

pisi (2)

where the coefficients p = (p1, . . . , pm)T are the shape
parameters. These shape parameters can typically be divided
into rigid similarity parameters ps and non-rigid object
deformation parameters po, such that pT = [pT

s ,p
T
o ]. Sim-

ilarity parameters are associated with a geometric similarity
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Fig. 3. Fitting curve for the AAM compared against the manual 68 point
landmark points. The Shape RMS error refers to the total shape RMS error
in terms of pixels after all meshes were similarity normalized with an inter-
occular distance of 50 pixels.

transform (i.e. translation, rotation and scale). The object-
specific parameters, are the residual parameters representing
non-rigid geometric variations associated with the determing
object shape (e.g., mouth opening, eyes shutting, etc.). Pro-
crustes alignment [23] is employed to estimate the base shape
s0.

Keyframes within each video sequence were manually
labelled, while the remaining frames were automatically
aligned using a gradient descent AAM fitting algorithm
described in [24]. Figure 4 shows the AAM in action, with
the 68 point mesh being fitted to the patient’s face in every
frame.From the 2D shape model we can derive the 3D
parameters using non-rigid structure from motion. See [22]
for full details.

B. AAM Accuracy

In checking the AAM alignment accuracy to manually
landmarked images, we first similarity normalized all tracked
AAM points and manual landmarks to a common mesh
size and rotation, with an inter-occular distance of 50 pixels
and aligned to the centre of the eye coordinates. We then
compared 2584 manually landmarked images against their
AAM counterpart. The fitting curve for the AAM is shown
in Figure 3. As can be seen in this curve, nearly all of the
AAM landmarks are within 2 pixels RMS error of the manual
landmarks, which is negligible when one considers that this
is based on a distance of 50 pixels between the center of
the eyes. This highlights the benefit of employing person-
specific model such as an AAM, as near perfect alignment
can result.

IV. EXPERIMENTS

In this section, we describe two experiments that we
conducted for i) AU and ii) pain detection at a frame-level.
We first describe our baseline AAM/SVM system.
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Fig. 4. Once the AAM has tracked a person’s face we can derive
some feature representations: (top) SPTS - similarity normalized shape and
(bottom) CAPP - canonical normalized appearance.

A. AAM/SVM Baseline System

Once we have tracked the patient’s face by estimating the
shape and appearance AAM parameters, we can use this
information to derive features from the face. From the initial
work conducted in [9], [25], [12], we extracted the following
features:
• SPTS: The similarity normalized shape or points, sn,

refers to the 66 vertex points in sn for both the x- and y-
coordinates, resulting in a raw 132 dimensional feature
vector. These points are the vertex locations after all
the rigid geometric variation (translation, rotation and
scale), relative to the base shape, has been removed.
The similarity normalized shape sn can be obtained by
synthesizing a shape instance of s, using Equation 2,
that ignores the similarity parameters p.

• CAPP: The canonical normalized appearance, a0
refers to where all the non-rigid shape variation has been
normalized with respect to the base shape s0. This is
accomplished by applying a piece-wise affine warp on
each triangle patch appearance in the source image so
that it aligns with the base face shape. For this study,
the resulting 87× 93 synthesized grayscale image was
used.

Support vector machines (SVMs) were then used to clas-
sify individual action units as well as pain. SVMs attempt
to find the hyperplane that maximizes the margin between
positive and negative observations for a specified class. A
linear kernel was used in our experiments due to its ability
to generalize well to unseen data in many pattern recognition
tasks [26]. LIBSVM was used for the training and testing of
SVMs [27].

In all experiments conducted, a leave-one-subject-out
strategy was used and each AU and pain detector was trained
using positive examples which consisted of the frames that
the FACS coder labelled containing that particular AU (re-
gardless of intensity, i.e. A-E) or pain intensity of 1 or more.
The negative examples consisted of all the other frames that
were not labelled with that particular AU or had a pain
intensity of 0.

In order to predict whether or not a video frame contained
an AU or pain, the output score from the SVM was used. As

TABLE IV
Results showing the area underneath the ROC curve for the

similarity-normalized shape (SPTS) and appearance (SAPP) as well as the

canonical appearance (CAPP) features. Note the average is a weighted

one, depending on the number of positive examples.

AU SPTS CAPP SPTS&CAPP
4 72.5± 3.1 60.0± 1.5 57.1± 1.5

6 80.1± 1.7 85.1± 0.5 85.4± 0.5

7 71.3± 0.8 82.6± 0.8 80.4± 0.7

9 75.1± 2.4 84.1± 1.6 85.3± 1.7

10 87.9± 1.7 83.2± 1.9 89.2± 1.4

12 79.4± 0.5 84.6± 0.5 85.7± 0.4

20 75.7± 1.7 61.7± 1.9 77.9± 1.6

25 78.8± 0.9 70.9± 1.0 78.0± 0.8

26 73.5± 1.1 54.7± 1.1 71.0± 1.0

43 83.1± 0.6 86.7± 0.7 87.5± 0.7

AVG 78.0± 0.8 79.2± 0.8 81.8± 0.8

there are many more frames with no behavior of interest than
frames of interest, the overall agreement between correctly
classified frames can skew the results somewhat. As such
we used the receiver-operator characteristic (ROC) curve,
which is a more reliable performance measure. This curve is
obtained by plotting the hit-rate (true positives) against the
false alarm rate (false positives) as the decision threshold
varies. From the ROC curves, we used the area under the
ROC curve (A′), to assess the performance. The A′ metric
ranges from 50 (pure chance) to 100 (ideal classification)2.
An upper-bound on the uncertainty of the A′ statistic was
obtained using the formula s =

√
A′(100−A′)
min {np,nn} where np, nn

are the number of positive and negative examples [28], [8].

B. AU Detection Results

We conducted detection for ten AUs (4, 6, 7, 9, 10, 12,
20, 25, 26 and 43). The results for the AU detection with
respect to the similarity-normalized shape (SPTS), the canon-
ical appearance (CAPP) and the combined (SPTS+CAPP)
features are shown in Table IV. In terms of the overall
average accuracy of the AU detection, the performance is
rather good with combined representation gaining the best
overall performance of 81.8, slightly better than CAPP (79.2)
and SPTS (78.0).

In terms of individual AU detection, it can be seen that
best performance is gained for the strong expressions such
as AU6, 10, 12 and 43. Due to the amount of very strong
examples in the distribution (i.e. AU intensity is greater than
A), it can be seen that robust performance can be gained.
For full analysis of AU experiments see [12].

C. Pain Detection at Frame-level

The results for automatically detecting pain are given
in Figure 5, which shows a clearer view of the trend we
observed in the AU detection results. For the individual

2In literature, the A′ metric varies from 0.5 to 1, but for this work we
have multiplied the metric by 100 for improved readability of results
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Fig. 5. The performance of the various features for the task of pain
detection at the frame-level (yellow = SPTS, green = CAPP). The upper-
bound error for all feature sets varied from approximately ±0.67 to 0.80.

feature sets, SPTS achieved 76.9 area underneath the ROC
curve and then the CAPP features yielding the best results
with 80.9. When we combine the different feature sets, we
again see the benefit of fusing the various representations
together showing that there exists complimentary information
with the performance increasing to 83.9%.

V. DISTRIBUTION DETAILS
The data was collected in the course of a research program

devoted to understanding the properties of facial expressions
of pain, the processes by which pain expression is perceived
and the role of pain expression in clinical assessment of
people suffering from pain conditions. Participants provided
informed consent for use of their video images for scientific
study of the perception of pain including pain detection.
Distribution of the database is governed by the terms of their
informed consent. Investigators who for scientific purposes
are interested in undertaking studies that can be clearly
construed as having the potential to advance understanding
of the perception of pain expression or contributing to the
development of improved techniques for clinical assessment
of pain conditions may make application for access to the
database. Computer vision studies, which provide a means
of modeling human decoding of pain expression, fall into
the category of perception of pain expression. Applications
should indicate how the proposed work addresses advance-
ment of knowledge in the perception of pain expression or
improved clinical assessment. Approved recipients of the
data may not redistribute it and agree to the terms of con-
fidentiality restrictions. Use of the database for commercial
purposes is strictly prohibited.

This data will be available from March 2011. If interested
in obtaining the database, please sign and return an agree-
ment form available from http://www.pitt.edu/

˜jeffcohn/PainArchive/. Once the signed form has
been received, you may expect to receive instructions within
5 business days.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we have described the UNBC-McMaster

Shoulder Pain Expression Archive which contains, 1) 200

video sequences containing spontaneous facial expressions;
2) 48,398 FACS coded frames, 3) pain frame-by-frame
scores, sequence-level self-report and observer measures; and
4) 66-point AAM landmarks. We have released this data in
an effort to address the lack of FACS coded spontaneous
expressions available for researchers as well as promoting
and facilitating research into the perception of pain. We have
also included baseline results from our AAM/SVM system.

Pain detection represents a key application in which facial
expression recognition could be applied successfully, espe-
cially if applied in the context of an heavily constrained situ-
ation such as an ICU ward where the number of expressions
is greatly limited. This is in compared to the situation where
a person is mobile and expresses a broad gamut of emotions,
where the approach we have taken here would be of little use
as the painful facial actions are easily confused with other
emotions (such as sadness, fear and surprise). For this to
occur, a very large dataset which is captured in conditions
that are indicative of the behavior to be expected in addition
to being accurately coded needs to be collected. Another
issue is the requirement of the detection in terms of timing
accuracy. In our system presented here, we detect pain at
every frame. However, at what level does this need to be
accurate at - milliseconds, seconds or minutes? Again this is
depends on the context in which this system will be used.
A more likely scenario would be to detect pain as an event
or at a sequence level (i.e. if a person was in pain over a
window of 1 to 2 mins). We plan to look into this area in
the future.
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