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Chapter 1. Equations of a line:

(a) Standard Form: Ay + B x = C .

(b) Point-slope Form: y − y0 = m (x− x0) , where m is the slope and (x0, y0) is a point

on the line.

(c) Slope-intercept: y = mx + b , where m is the slope and b is the y-intercept.

The equation of a circle centered at (h, k) and radius r is given by,

(x− h)2 + (y − k)2 = r2 .

The distance between two points A(x1, y1) and B(x2, y2) is given by,

d(A,B) =
√

(x2 − x1)2 + (y2 − y1)2 .

The midpoint between two points A(x1, y1) and B(x2, y2) is given by,

midpt(A,B) =

(
x1 + x2

2
,
y1 + y2

2

)
.

Defining the Domain and Range:

Domain: The Domain of a function is the set of (well-defined) x-values, or inputs.

Range: The Range (or Image) of a function is the set of y-values, or outputs, for which
there is at least one input x that maps to y.

Parallel and Perpendicular lines:

(a) Parallel lines have the same slopes, i.e. m1 = m2 .

(b) Perpendicular lines have negative reciprocal slopes, i.e.

m1m2 = −1 ⇐⇒ m1 = − 1

m2

⇐⇒ m2 = − 1

m1

.



Principles for solving inequalities:

Addition Principle:
a < b =⇒ a + c < b + c

Multiplication Principles:

a < b and c > 0 =⇒ a c < b c

a < b and c < 0 =⇒ a c > b c (inequality changes direction)
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The difference quotient or average rate of change:

f(x + h)− f(x)

h
.

The composition of two functions f and g is defined as

(f ◦ g)(x) = f(g(x)) .

Remark: You should simplify compositions before defining their domain.

Even and Odd functions:

(a) Even functions are symmetric with respect to the y-axis and satisfy

f(−x) = f(x) .

(b) Odd functions are symmetric with respect to the origin and satisfy

f(−x) = −f(x) .

Horizontal (i), (ii) and Vertical (iii), (iv) Translations:

For a > 0 , we have (i) the graph of y = f(x + a) is a shift of the graph of f(x) a-
units to the left , and (ii) the graph of y = f(x− a) is a shift of the graph of f(x) a-units
to the right .

For b > 0 , we have (iii) the graph of y = f(x) + b is a shift of the graph of f(x) b-
units up , and (iv) the graph of y = f(x)− b is a shift of the graph of f(x) b-units down.

The transformation f(−x) is a reflection of the graph of f across the y-axis, and −f(x)
is a reflection across the x-axis.



The transformation f(a x), with a > 0

(i) makes the graph of f ‘stretch’ (wrt the x-direction) when 0 < a < 1.

(ii) makes the graph of f ‘shrink’ (wrt the x-direction) when a > 1.

The transformation a f(x), with a > 0

(i) makes the graph of f ‘shrink’ (wrt the y-direction) when 0 < a < 1.

(ii) makes the graph of f ‘stretch’ (wrt the y-direction) when a > 1.

Direct and Inverse Variation:

(a) Direct variation: f(x) = k x or y = k x where k > 0, x > 0.

(b) Inverse variation: f(x) = k
x

or y = k
x

where k > 0, x > 0 .
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Complex Numbers:

The number i is defined as

i =
√
−1 =⇒ i2 = −1 .

Any complex number z can be written in the form

a + b i

where a , b ∈ R. We say the real part of z is a and the imaginary part of z is b , and we
write

Re (z) = a Im (z) = b , respectively.

The Complex Conjugate of the complex number z = a + b i is

z̄ = a− b i .

Remark: If z = a+ b i is a complex number, then the multiplication z · z̄ = z̄ · z = a2 + b2,
which is a real number! This property of complex numbers is helpful to use when simplifying
a given number (e.g. the ratio of two complex numbers) to the form a + b i.



Quadratic Equations:

Any quadratic equation with real coefficients can be written in the form

a x2 + b x + c = 0 . (1)

where a , b , c are real numbers.

Any quadratic function can be written in the form

f(x) = a x2 + b x + c , (2)

Note that when finding the zeros of a quadratic function, we obtain a quadratic equation. We
solve quadratic equations either by factoring, completing the square, or using the quadratic
formula, all in the name of finding the roots. If the quadratic equation is written with
coefficients a, b, c in the form of Eq. (2), the quadratic formula is

x1,2 =
−b±

√
b2 − 4 a c

2 a
.

where a , b , c are real numbers.

Note that a quadratic is defined by two roots (or zeros), say x1, x2, and a point on the
graph, say f(x0) = y0 6= 0, where x0 6= x1, x2. The polynomial can then be constructed as
follows: Let c be an unknown, nonzero constant, and write

f(x) = c (x− x1) (x− x2) .

Then we can evaluate the function at the point x0 to solve for the unknown constant c. We
have y0 = f(x0) = c (x0 − x1) (x0 − x2) , and since x0 6= x1, x2, then we can divide by the
quantity and obtain,

f(x) =
(x− x1) (x− x2)

(x0 − x1) (x0 − x2)
y0 .

Remark: In general, for a polynomial of degree n, we would need n zeroes, say x1 x2 . . . , xn

and another point on the graph such that y0 = f(x0) 6= 0, where x0 6= x1 x2 (see Chapter 4).

Graphing a quadratic function:

Recall, any quadratic written in the form of Eq. (2), can be written

f(x) = a (x− h)2 + k ,

where h = − b

2 a
and k = c− b2

4 a
, by completing the square of the function.



Figure 1: The x-coordinate of the vertex, x = −1, gives the axis of symmetry. It is the
midpoint or average of the two zeros x1 = 1 and x2 = −3.

The vertex of a parabola written in the form of Eq. (2) is

(h, k) =

(
− b

2 a
, f

(
− b

2 a

))
=

(
− b

2 a
, c− b2

4 a

)
Solving inequalities with absolute value:

Let a > 0. Then
|x| < a =⇒ −a < x < a

and
|x| > a =⇒ x < −a or x > a

Similar statements hold for ‘≤’ and ‘≥’ .
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Polynomial Functions:

A polynomial function p(x) is given by

p(x) = an x
n + an−1 x

n−1 + an−2 x
n−2 + · · ·+ a1 x + a0

where the coefficients an, an−1, an−2, . . . , a1, a0 are real numbers and the exponents are whole
numbers.



The Degree of the polynomial p(x) is the highest power of x, in this case,

Deg(p) = n .

→ The degree of a polynomial tells you the end behaviors.

The Leading Coefficient of the polynomial p(x) is the coefficient for the highest power
term,

LC(p) = an .

→ The sign of this term determines the orientation. The Leading coefficient is not to be
confused with the Leading Term of the polynomial p(x), which is

LT(p) = an x
n .

Figure 2:



Using the Intermediate Value Theorem (IVT) to show whether a polynomial has a
real root:

Let p(x) be a polynomial as in Fig. 3. Suppose that for a 6= b, p(a) and p(b) have
opposite signs. Then, since p(x) is a polynomial, and polynomials are continuous, there is
a real root between a and b, say c ∈ (a, b). We say that c is a root (or zero) of the function
p(x), since we have shown that p(c) = 0 by the IVT.

Figure 3:

The Remainder Theorem Let f(x) be a polynomial. Then by dividing f(x) by x − c
(using either synthetic or long division), we can write

f(x) = (x− c) q(x) + R,

where q(x) is the quotient (of degree one less than f(x)) and R is the remainder. The
Remainder Theorem states that

f(c) = (c− c) q(c) + R = 0 q(c) + R = 0 + R = R.

The Factor Theorem gives a relationship between roots and linear factors. If the poly-
nomial f(x) has a root (or zero) at x = c, then

f(c) = 0 ⇐⇒ f(x) = (x− c) q(x) ,

i.e. x− c is a factor of f(x) and the remainder is R = 0. This is an immediate consequence
of the Remainder Theorem.



A rational function is a function f that is a quotient of two polynomials. That is,

f(x) =
p(x)

q(x)

where p(x) and q(x) are polynomials and where q(x) is not the zero polynomial. The do-
main of f consists of all inputs x for which q(x) 6= 0.

Remark. So finding the zeroes of the denominator, i.e. q(x) = 0, gives you the ‘problem
childs’. These are the things you have to leave out (hopefully, not how you would actually
parent problem children) of the domain of f(x),

Df = {x ∈ R | q(x) 6= 0} = R} = R \ {x | q(x) = 0}

Vertical Asymptotes. If p(x) and q(x) have no common factors, then the Vertical Asymp-
totes (VA) correspond to the x-values for which q(x) = 0. If there are any common factors,
these correspond to a hole in the graph, since you still have to leave these points out of the
domain.

Horizontal Asymptotes. Consider the rational function f(x) = p(x)
q(x)

, where p(x) and

q(x) are polynomials with no common factors. There are 3 cases to consider for horizontal
asymptotes:

(1) Suppose deg(p(x)) < deg(q(x)), then the horizontal asymptote occurs at y = 0 .

(2) Suppose deg(p(x)) = deg(q(x)) and let the LC(p) = a and the LC(q) = b, then the

horizontal asymptotes occur at the y =
a

b
.

(3) Suppose the deg(p(x)) = 1+deg(q(x)), then by the remainder theorem, rewrite p(x) =
m(x) q(x)+R, where m(x) is a linear term (i.e. deg(m(x)) = 1) and R is the remainder.
Note that deg(m(x)) + deg(q(x)) = 1 + deg(q(x)) = deg(p(x)). Then we can write

p(x)

q(x)
=

m(x) q(x) + R

q(x)
= m(x) +

R

q(x)

As the absolute value of x gets large, i.e. x→ ±∞, R
q(x)
→ 0 .

Then the Oblique Asymptote is m(x) , since

p(x)

q(x)
∼ m(x) as |x| → ∞ .



Chapter 5. Obtaining a Formula for the Inverse of a function. Let f(x) be a
one-to-one function so that the inverse not only exists, but also is a function. Then to find
the inverse function, denoted f−1(x)...

Step 1. Let y = f(x).

Step 2. Replace x←→ y so that you have x = f(y).

Step 3. Solve for y in terms of x and let this y be y = f−1(x).

Congrats, you have found the inverse! To check your algebra, you can show that that(
f ◦ f−1

)
(x) =

(
f−1 ◦ f

)
(x) = x

Remark. Here (f ◦ f−1) (x) = f(f−1(x)) means the composition of the function with it’s
inverse, NOT MULTIPLICATION !

Geometrically, inverse functions correspond to a reflection of f(x) across the line y = x, so
for f−1(x) to exist, f(x) must pass the horizontal line test (i.e. one-to-one).

Figure 4:



An exponential function has the form f(x) = ax, where x is a real number, a > 0
and a 6= 1. The function f(x) is called the exponential function with base ‘a’. Note that
f(x) > 0 for all x.

Figure 5:

(Left) The graphs of exponential functions with base 0 < a < 1, f(x)→ 0 as x→∞ and
f(x)→∞ as x→ −∞ .

(Right) The graphs of exponential functions with base a > 1, f(x)→∞ as x→∞ and
f(x)→ 0 as x→ −∞ .

The logarithmic function

We define y = loga(x) as that number y such that x = ay, where x > 0, a > 0 and
a 6= 1. For instance, we read ‘y = log2(x)’ as ‘y equals the log base 2 of x’ and we should
ask ourselves 2 to what power gives me x?

In general,
y = loga(x) ⇐⇒ x = ay

So the functions f(x) = ax and f−1(x) = loga(x) are inverses of one another. That is,(
f ◦ f−1

)
(x) = f(loga(x)) = a(loga(x)) = x = loga(a

x) = f−1(ax) =
(
f−1 ◦ f

)
(x) .



Figure 6:

Rules of Logarithms.

Let a , b > 0 and m, n ∈ Z. Then

1. loga(1) = 0 and loga(a) = 1 (Since a0 = 1 )

2. loga(M ·N) = loga(M) + loga(N) (Product Rule )

3. loga(
M
N

) = loga(M)− loga(N) (Quotient Rule)

4. loga(M
x) = x loga(M) (Power Rule)

5. loga(a
x) = x and a(loga(x)) (Inverses)



Exponential Growth is a model for, amongst other things, population growth and (con-
tinuously) compounded interest. The function model is

P (t) = P0 e
k t , k > 0 .

• P0 - the initial population (or amount of money) invested.

• k - the exponential growth rate

• t - the unit of time

• P (t) - the population (or amount of money) at time t

The doubling time. We want to find the amount of time it takes for the population (or
money) to double. The doubling time td satisfies

2P0 = P (td) = P0 e
k td

⇐⇒ 2 = e (k td)

⇐⇒ ln(2) = ln(e (k td)) = k td

⇐⇒ td =
1

k
ln(2)

where ln(x) = loge(x) is the natural log or log base e ≈ 2.714 . . . .

Exponential decay is a model for, amongst other things, radioactive decay. The function
model is

P (t) = P0 e
−k t , k > 0 .

• P0 - the initial amount of radioactive material (e.g. Bismuth has a half-life of 5 days)

• k - the exponential decay rate

• t - the unit of time

• P (t) - the amount of radioactive material at time t

Figure 7:



The Half-Life. We want to find the amount of time it takes for the material to decay to
half it’s initial amount P0. The half-life time th satisfies

P0

2
= P (td) = P0 e

−k th

⇐⇒ 1

2
= e−k th

⇐⇒ ln

(
1

2

)
= ln(e−k th) = −k th

⇐⇒ ln

(
1

2

)
= ln(2−1) = (−1) ln(2) = −k th

⇐⇒ th =
1

k
ln(2)

The half-life for an exponential decay model with decay rate k satisfies the same equation
as the doubling time for an exponential model with growth rate k !

Chapter 6. Some methods for solving systems of linear equations:

Substitution - For the 2 by 2 system, pick an equation, solve for one variable in terms of
the other. Substitute this into the other equation and solve. Then Back Substitute in to
either of the equations to obtain the other solution variable. Substitution is still do-able
in a 3 by 3 system, but we typically use some sort of elimination technique.

Elimination - In this method, Eliminate one of the variables by adding two equations.
For a 3 by 3 system, if you eliminate twice (using all 3 equations) and in the right way,
you can obtain a 2 by 2 system and begin substitution. Then back substitute in the 2 by
2 system and further back substitute for the third variable.



Gaussian elimination. Keep track of system coefficients (with he augmented matrix).
The goal is to obtain Row-echelon form, which satisfies

1. If a row does not consist entirely of 0’s, then the first nonzero entry in the row is a 1.

2. For any two successive nonzero rows, the leading 1 in the lower row should be farther
to the right than the leading 1 in the higher row.

3. All the rows consisting entirely of 0’s are at the bottom of the matrix.

If an additional property is satisfied, the matrix is said to be in Reduced Row-
echelon form:

4. Each column that contains a leading 1 has 0’s everywhere else.

We can obtain row-echelon form by performing row operations, which include:

1. Interchanging any two rows.

2. Multiplying each entry in a row by the same nonzero constant.

3. Adding a nonzero multiple of one row to another.

These will manipulate the system in a way that doesn’t change the solution set of the
original linear system.

Matrix Multiplication. Let A = (ai.j) be m × n and B = (bi.j) be n × p. Then
the product is AB = (ci,j) an m× p matrix, where

ci,j = ai,1 b1,j + ai,2 b2,j + ai,3 b3,j + · · ·+ ai,n bn,j

This looks complicated, but this just says, in order to obtain the (i, j) entry of AB, we take
the ith row of A and jth column of B, multiply the corresponding entries and add them.
This is why you must check that the ‘inner’ dimensions match. That is, the number of
columns in A must be equal to the number of rows in B.

The Matrix Inverse.

For an n × n matrix A, if there is a matrix A−1 so that A−1A = I (or AA−1 = I),
then A−1 is the inverse of A. Here I is the n× n identity matrix (i.e. 1’s on the diagonal,
0’s elsewhere).

For any matrix A or vector x, the identity matrix satisfies

I(x) = I x = x and AI = I A = A .



Using the inverse to solve systems of linear equations. For n linear equations and
n unknowns, we can consider the system as a matrix equation,

AX = B

where A is the (n × n) coefficient matrix, X is the (n × 1) vector of unknowns, and B is
the (n× 1) vector of constants on the right. If A is invertible, we can multiply both sides
on the left by A−1 to solve the system:

AX = B

⇐⇒ A−1 (AX) = A−1B

⇐⇒ (A−1A)X = A−1B

⇐⇒ I X = A−1B

⇐⇒ X = A−1B

To find the inverse, one can apply Guass-Jordan Elimination and keep track of the iden-
tity matrix (in a ‘super’ augmented matrix) as she performs the row-equivalent operations.
Once the matrix A is in reduced row-echelon form (A→ I), the other matrix is the inverse
of A !

Determinants. Remark. This is an operation on square matrices that gives a real number
associated with a matrix A. If the determinant of the matrix is nonzero, then the matrix
is nonsingular or invertible.

The 2× 2 case. Let

A =

(
a b
c d

)
Then the determinant of A is

det(A) = |A| =
∣∣∣∣ a b
c d

∣∣∣∣ = a d− b c

Consider a square matrix (n× n) A = (ai, j).

Then the Minor with respect to the entry ai,j, denoted Mi,j, is obtained by taking the
determinant of the matrix formed by deleting the ith row and jth column of A. Then the
Cofactor of matrix entry ai,j, denoted Ai,j, is given by

Ai,j = (−1)i+jMi,j

where Mi,j is the minor described above.



One can obtain the determinant of a square matrix by Cofactor Expansion about a
row or column. In working on specific matrices, one should choose a row or column with
the most zeros (to reduce computation). For the 3× 3 case, we show the expansion about
the first column of the matrix A = (ai,j). See the example on the next page.


