Solutions

- 1. Consider the relation $\{(-2,3),(0,4),(3,3),(4,3),(6,-1)\}.$
 - (a) Determine whether the relation is a function.

Solution: Yes, it is a function because no two ordered pairs have the same first coordinate and different second coordinates.

(b) Identify the domain and the range.

Solution: The domain is the set of all first coordinates: $\{-2, 0, 3, 4, 6\}$.

The range is the set of all second coordinates: $\{-1, 3, 4\}$.

2. Find a point-slope equation of the line that has y intercept -8 and is parallel to the line y + 2x = 3.

Solution: $y + 2x = 3 \Leftrightarrow y = -2x + 3 \Rightarrow$ the slope of both lines is m = -2.

The point-slope equation of the line is $y - (-8) = -2(x - 0) \Leftrightarrow y + 8 = -2x$.

3. Solve the compound inequality $x-2 \le 3+2x < 9-x$.

Solution: We have to solve two inequalities $x-2 \le 3+2x$ and 3+2x < 9-x and find the intersection of the corresponding solution sets.

 $x-2 \le 3+2x \iff -x \le 5 \iff x \ge -5$. The solution set is $[-5,\infty)$.

 $3 + 2x < 9 - x \Leftrightarrow 3x < 6 \Leftrightarrow x < 2$. The solution set is $(-\infty, 2)$.

The solution set of the compound inequality is [-5, 2).

4. A distance between a town A and a town B is 275 miles. At 1 pm a car leaves town A and goes to town B. At the same time a bus leaves town B and goes to town A. The car and the bus meet at 3:30 pm. The car runs 10 mph faster than the bus. Find the speed of the car.

Solution: Let x be the speed of the car, in mph. Then the speed of the bus is x-10 mph.

Before they met they had been traveled for 2.5 hours. Then 2.5x + 2.5(x - 10) = 275.

$$\Leftrightarrow$$
 $5x - 25 = 275 \Leftrightarrow 5x = 300 \Leftrightarrow x = 60.$

Answer: The the speed of the car is 60 mph.

5. For the function $f(x) = x^3 + 5$ find the difference quotient $\frac{f(x+h) - f(x)}{h}$.

Solution:
$$\frac{f(x+h) - f(x)}{h} = \frac{((x+h)^3 + 5 - (x^3 + 5))}{h}$$

$$=\frac{x^3+3x^2h+3xh^2+h^3-x^3-5}{h}=\frac{3x^2h+3xh^2+h^3}{h}=3x^2+3xh+h^2.$$

6. Simplify. Write answers in the form a + bi where a and b are real numbers.

(a)
$$(5+3i)-(8-3i)$$
.

Solution:
$$(5+3i) - (8-3i) = 5+3i-8+3i = -3+6i$$

(b)
$$(-2+5i)(3-2i)$$

Solution:
$$(-2+5i)(3-2i) = -6+4i+15i-10i^2 = -6+19i-10 = -16+19i$$

(c) i^{33} .

Solution:
$$i^{33} = i^{32+1} = i^{4 \cdot 8+1} = i^1 = i$$

(d)
$$\frac{-2+5i}{3-2i}$$
.

Solution:
$$\frac{-2+5i}{3-2i} = \frac{-2+5i}{3-2i} \cdot \frac{3+2i}{3+2i} = \frac{(-2+5i)(3+2i)}{3^2+2^2} = \frac{-6-4i+15i-10}{13}$$
$$= \frac{-16+11i}{13} = -\frac{16}{13} + \frac{11}{13}i$$

7.
$$f(x) = -\frac{2}{3}x^2 + 4x - 4$$
.

(a) By completing the square write f(x) in the form $a(x-h)^2 + k$.

Solution:
$$f(x) = -\frac{2}{3}x^2 + 4x - 4 = -\frac{2}{3}(x^2 - 6x) - 4 = -\frac{2}{3}(x^2 - 2 \cdot 3x + 9 - 9) - 4$$

= $-\frac{2}{3}(x^2 - 2 \cdot 3x + 9) - \frac{2}{3}(-9) - 4 = -\frac{2}{3}(x^2 - 2 \cdot 3x + 9) + 6 - 4$

$$f(x) = -\frac{2}{3}(x-3)^2 + 2$$

(b) Find the vertex and the axis of symmetry of f(x).

Solution: The vertex is (3,2). The axis of symmetry is x=3.

- (c) Find the interval on which f(x) is increasing and the interval on which it is decreasing. Solution: The interval of increasing is $(-\infty, 3)$. The interval of decreasing is $(3, \infty)$.
- (d) Sketch the graph of the function f(x). Mark the vertex and draw the axis of symmetry.

Solution:

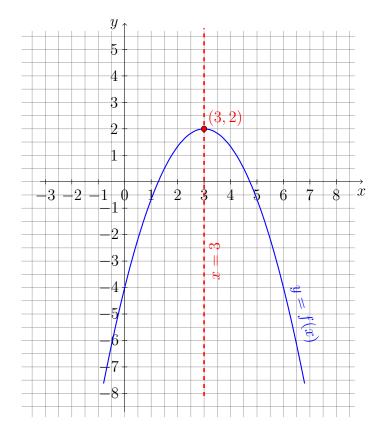


Figure 1: Graph of the function $f(x) = -\frac{2}{3}x^2 + 4x - 4$.

8. Solve the equation $\frac{2x}{x+3} - \frac{1}{x+1} = 0$.

Solution:
$$\frac{2x}{x+3} - \frac{1}{x+1} = 0 \iff \frac{2x(x+1) - (x+3)}{(x+3)(x+1)} = 0 \iff \frac{2x^2 + x - 3}{(x+3)(x+1)} = 0$$
$$\Leftrightarrow 2x^2 + x - 3 = 0, \quad x \neq -3, \quad x \neq -1$$
$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1+24}}{4}, \quad x \neq -3, \quad x \neq -1$$
$$\Leftrightarrow x = \frac{-1 \pm 5}{4}, \quad x \neq -3, \quad x \neq -1$$

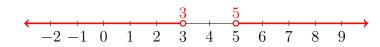
 \Leftrightarrow $x = -\frac{3}{2}$ or x = 1, $x \neq -3$, $x \neq -1$

Answer: $-\frac{3}{2}$ and 1.

9. Solve the equation |3x + 1| - 4 = -1.

Solution:
$$|3x+1|-4=-1 \Leftrightarrow |3x+1|=3 \Leftrightarrow 3x+1=-3 \text{ or } 3x+1=3$$

 $\Leftrightarrow 3x=-4 \text{ or } 3x=2 \Leftrightarrow x=-\frac{4}{3} \text{ or } x=\frac{2}{3}$


Answer: $-\frac{4}{3}$ and $\frac{2}{3}$.

10. (a) Solve the inequality |x-4| > 1 and write interval notation for solution set.

Solution: $|x-4| > 1 \Leftrightarrow x-4 < -1 \text{ or } x-4 > 1 \Leftrightarrow x < 3 \text{ or } x > 5.$ The solution set is $(-\infty, 3) \cup (5, \infty)$.

(b) Graph the solution set.

Solution:

