Exam 2

 ${\bf Math~0220~(evening)} \qquad \qquad {\bf Spring~2011}$

100 points total Student's name:

1. [10 points] Use a linear approximation to estimate $\frac{1}{1001}$.

2. [15 points] The how long will only	half-life of cesium-13 y 2 mg remain?	37 is 30 years.	Suppose you	have a 300-mg sample.	After

- $3.\ {\rm Find}\ {\rm derivatives}$ of the given functions.
- (a) [6 points] $f(\theta) = \ln(2\sin\theta)$

(b) [6 points] $y = 3^{\cos(\pi x)}$

(c) [6 points] $y = x^{\ln x}$

- 4. For the function $f(x) = \frac{2x^2}{x^2 + 3}$
- (a) [5 points] Find the intervals on which f is increasing or decreasing.

(b) [5 points] Find the local maximum and minimum values of f.

(c) [5 points] Find the intervals of concavity and the inflection points.

- 5. The function $f = (x^2 1)^3$ is defined on the interval [-1, 2].
- (a) [5 points] Explain why the function attains its absolute maximum and absolute minimum values on the given interval.

(b) [10 points] Find the absolute maximum and the absolute minimum values of f on the interval.

- 6. For each limit define the type of indeterminate form [1 point]. Them find the limit [5 points].
- (a) [6 points] $\lim_{x \to -\infty} x^2 e^x$

(b) [6 points] $\lim_{x\to 0} (1-2x)^{1/x}$

7. [15 points] Verify that the function $f(x) = x^3 + x - 1$ satisfies the hypotheses of the Mean Value Theorem on the interval [0, 2]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

Bonus problem. [10 points extra] Find the exact value of the expression $2^{3\log_2 3} + \tan(\sin^{-1} \frac{1}{2})$.