Final Exam

 $\mathbf{Math} \ \mathbf{0220} \ (\mathbf{evening}) \qquad \qquad \mathbf{Spring} \ \mathbf{2011}$

100 points total

Student's name:

- 1. Evaluate the integrals.
- (a) [10 points] $\int_{0}^{\pi/2} \cos^3 x \, dx$

(b) [5 points] $\int 8x e^{2x^2} dx$

2. [15 points] A rectangular sheet of paper with perimeter 36 cm is to be rolled into a cylinder. What are the dimensions of the sheet that give the greatest volume?	

- 3. Find the limit, if it exists. If the limit does not exist explain why. Show all the necessary steps and justify your solution. You may use any method.
- (a) [5 points] $\lim_{\theta \to 0^+} (1 + 3\theta)^{\cot \theta}$

(b) [5 points]
$$\lim_{t \to -2} \frac{t+2}{3|t+2|}$$

(c) [5 points]
$$\lim_{x \to \infty} \frac{\cos(2x^2)}{x}$$

4. (a) [5 points] Find the derivative of the function $g(x) = \int_{2}^{\sqrt{x}} \sqrt{t^2 - 1} dt$

(b) [10 points] Find an equation of the tangent line to the curve $y = \ln(2 \tan x)$ when $x = \pi/4$. Write the answer in the form y = mx + b. No full credit if the form is different.

- 5. For the function $f(x) = \frac{e^x}{x}$
- (a) [2 points] Find its domain.

(b) [5 points] Find vertical and horizontal asymptotes (if any).

(c) [5 points] Find the intervals on which f is increasing or decreasing.

(d) [3 points] Find the local maximum and minimum values of f (f, not x!)

(e) [5 points] Find the intervals of concavity [Hint: $x^2 - 2x + 2 > 0$ for any x].

6. (a) [15 points] Find the average value f_{ave} of the function $f = x \sin \pi x$ on the interval [-1, 1].

(b) [5 points] Is there a number c inside the interval (-1,1) such that $f(c)=f_{ave}$? Support your answer.