Math 0220

Quiz 4

Spring 2013

Solutions

1. [5 points] Use differentials to estimate the amount of paint needed to apply a coat of paint 0.03 cm thick to a hemispherical dome of the radius 20m.

Solution: The volume of a semisphere is $V=\frac{2}{3}\pi r^3$. The amount of paint needed is $\Delta V\approx dV=\frac{dV}{dr}dr=2\pi r^2dr\approx 2\pi r^2\Delta r$.

It is given that r = 20 m and $\Delta r = 0.03 \text{ cm} = 3 \cdot 10^{-2} \text{ cm} = 3 \cdot 10^{-2} \cdot 10^{-2} \text{ m}$.

Then $\Delta V \approx 2\pi \cdot 20^2 \cdot 10^{-2} \cdot 10^{-2} = 2\pi \cdot 4 \cdot 10^2 \cdot 10^{-2} \cdot 10^{-2} = 8\pi \cdot 10^{-2} = 0.08\pi \text{ m}^3$.

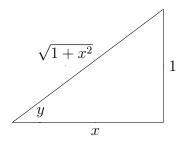
2. [5 points] A sample of tritium-3 decayed to 94.5% of its original amount after one year. What is the half-life of tritium-3? Leave \ln in your answer.

Solution: The mass of tritium-3 is $m(t) = m_0 e^{kt}$. Then

$$m(1) = m_0 e^k = 0.945 m_0 \implies e^k = 0.945 \implies m(t) = m_0 (0.945)^t.$$

We need to find t such that $m(t) = \frac{1}{2}m_0$ or $m_0(0.945)^t = \frac{1}{2}m_0$ which gives $(0.945)^t = \frac{1}{2}$.

Applying ln to both sides we obtain $t \ln(0.945) = -\ln 2$.


Then the half-live is $t = -\frac{\ln 2}{\ln 0.945}$ years.

[Note, that this number is positive $b/c \ln 0.945$ is negative].

Another way: We assume without loss of generality, that $m_0=1$ and use 2 as a base for the exponent. Then $m(t)=2^{-kt}$. Let t be the half-life. Then $2^{-kt}=1/2$ and $2^{-k}=0.945$ \Rightarrow $0.945^t=1/2$ \Rightarrow $t \ln 0.945 = \ln(1/2) = -\ln 2$ \Rightarrow $t=-\frac{\ln 2}{\ln 0.945}$ years.

bonus problem [5 points extra] Simplify the expression $\sin(\cot^{-1} x)$.

Solution: By the definition of an inverse function $y = \cot^{-1} x \iff x = \cot y$.

Or $\cot y = \frac{x}{1}$ (see the picture, y is an angle in the right triangle).

Then
$$\sin(\cot^{-1} x) = \sin y = \frac{1}{\sqrt{1+x^2}}$$
.