Math 0220

Quiz 5

Spring 2013

Solutions

1. Find the limit. Define undeterminate forms and apply l'Hospital's Rule where appropriate.

(a) [2 points]
$$L = \lim_{x \to 0} \frac{x}{(4-x)^{3/2} - 8}$$

Solution:
$$L = \lim_{x \to 0} \frac{x}{(4-x)^{3/2} - 8} \quad \left[\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right] \stackrel{LR}{=} \lim_{x \to 0} \frac{1}{\frac{3}{2}(4-x)^{1/2} \cdot (-1)}$$

$$\stackrel{DSP}{=} \frac{1}{\frac{3}{2} \cdot 2 \cdot (-1)} = -\frac{1}{3}.$$

(b) [3 points]
$$L = \lim_{x \to 0^+} (\sqrt{x})^x$$
.

Solution:
$$(\sqrt{x})^x = e^{\ln(\sqrt{x})^x} = e^{x/2 \cdot \ln x}$$

$$\lim_{x \to 0^+} (\sqrt{x})^x = \lim_{x \to 0^+} e^{x/2 \cdot \ln x} = e^{\lim_{x \to 0^+} x/2 \cdot \ln x}$$

$$\lim_{x \to 0^+} x/2 \cdot \ln x = \lim_{x \to 0^+} \frac{\ln x}{2 \, x^{-1}} \, \left[\overset{\circ}{\sim} \overset{\circ}{\sim} \right] \, \stackrel{LR}{=} \, \lim_{x \to 0^+} \, \frac{x^{-1}}{-2x^{-2}} = \lim_{x \to 0^+} \, \frac{x}{-2} \stackrel{DSP}{=} 0.$$

Hence, $L = e^0 = 1$.

2. [5 points] Use guidelines of the section 4.4 to sketch the curve $y = x - 3x^{1/3}$.

Solution: We define $f(x) = x - 3x^{1/3}$.

A. Domain of f(x) is $(-\infty, \infty)$.

B The y-intercept is 0. To find x-intercepts we solve f(x) = 0, $x - 3x^{1/3} = 0$, $x^{1/3}(x^{2/3} - 3) = 0$ which gives three solutions x = 0, $x = -3^{3/2}$, and $x = 3^{3/2}$.

C. $f(-x) = -x + 3x^{1/3} = -f(x)$. Hence f(x) is odd. The curve y = f(x) is symmetric about the origin. It is clear that f(x) is a non-periodic function.

D. There is no asymptotes.

E.
$$f'(x) = 1 - x^{-2/3} = 1 - \frac{1}{x^{2/3}} = \frac{x^{2/3} - 1}{x^{2/3}}$$

$$f'(x) = 0$$
 when $x^{2/3} - 1 = 0$ or when $x = -1$, $x = 1$,

f'(x) is undefined when x = 0 (the graph has vertical tan. line at x = 0).

CNs are x = -1, x = 0, and x = 1.

The graph increases when f'(x) > 0 or when x is in $(-\infty, -1) \cup (1, \infty)$.

The graph decreases when f'(x) < 0 or when x is in (-1, 1).

F. The local maximum is f(-1) = -1 + 3 = 2 since f'(x) changes its sign from "+" to "-".

The local minimum is f(1) = 1 - 3 = -2 since f'(x) changes its sign from "-" to "+".

f'(x) does not change its sign at x = 0.

G.
$$f''(x) = \frac{2}{3}x^{-5/3}$$
. IP is $(0,0)$.

The graph is CD when f''(x) < 0 or when x < 0, CU when f''(x) < 0 or when x > 0.

H. To see the graph look at the solution to the problem 23 from the section 4.4.

bonus problem [5 points extra] Find the absolute maximum and absolute minimum values of $f(x) = \sin x + \cos x$ on the interval $[0, \pi/3]$.

Solution: The function is continuous and the interval is closed. We apply the Closed interval method: $f'(x) = \cos x - \sin x$. Inside the given interval f'(x) = 0 when $x = \pi/4$. f'(x) is defined everywhere. CN is $x = \pi/4$.

$$f(0) = 1$$
, $f(\pi/4) = \sqrt{2}$, $f(\pi/3) = \frac{1+\sqrt{3}}{2}$.

The absolute maximum value is $\sqrt{2}$, the absolute minimum value is 1.

[Note: $2\sqrt{2} > 1 + \sqrt{3}$. Indeed, if we square both sides, then we get $8 > 1 + 2\sqrt{3} + 3$. The last is true b/c $4 > 2\sqrt{3}$. Square both sides to see it.]