Spring 2015

Solutions

Math 0220

1. Determine the equation of the line which has a slope m=3 and passes through the point (12,12). Write it in the Slope-Intercept form.

Solution:
$$y-12=3(x-12), y=2x-24$$

2. Write an expression defining y as a function of x which best describes this graph. What is the period of this trigonometric function?

Solution:
$$y = 3\sin\left(\frac{\pi x}{4}\right)$$
. Period is 8.

3. Find the limit, if it exists. If the limit does not exist explain why. You may use any method except the L'Hospital's Rule.

(a)
$$\lim_{x \to 0} \frac{\sin^2(3x)}{x^2}$$

Solution:
$$\lim_{x \to 0} \frac{\sin^2(3x)}{x^2} = \lim_{x \to 0} \left(\frac{\sin(3x)}{x}\right)^2 = \left(\lim_{x \to 0} \frac{\sin(3x)}{x}\right)^2 = 3^2 = 9$$

(b)
$$\lim_{x \to 0} \frac{x}{\sqrt{4-x}-2}$$

Solution:
$$\lim_{x \to 0} \frac{x}{\sqrt{4-x}-2} \cdot \frac{\sqrt{4-x}+2}{\sqrt{4-x}+2} = \lim_{x \to 0} \frac{x(\sqrt{4-x}+2)}{4-x-4}$$

$$= \lim_{x \to 0} \frac{x(\sqrt{4-x}+2)}{-x} = \lim_{x \to 0} -(\sqrt{4-x}+2) = -(\sqrt{4}+2) = -4.$$

(c)
$$\lim_{x \to 0} \frac{x^2}{|x|}.$$

Solution:
$$\lim_{x \to 0^{-}} \frac{x^{2}}{|x|} = \lim_{x \to 0^{-}} \frac{x^{2}}{-x} = \lim_{x \to 0^{-}} (-x) = 0$$

$$\lim_{x \to 0^+} \frac{x^2}{|x|} = \lim_{x \to 0^+} \frac{x^2}{x} = \lim_{x \to 0^-} x = 0$$

Hence,
$$\lim_{x \to 0} \frac{x^2}{|x|} = 0$$
.

(d)
$$\lim_{x \to \infty} (x - \sqrt{x^2 - x})$$

Solution:
$$\lim_{x \to \infty} (x - \sqrt{x^2 - x}) = \lim_{x \to \infty} (x - \sqrt{x^2 - x}) \cdot \frac{x + \sqrt{x^2 - x}}{x + \sqrt{x^2 - x}}$$

$$= \lim_{x \to \infty} \frac{x^2 - x^2 + x}{x + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{x}{x + \sqrt{x^2 - x}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{1}{1 + \sqrt{1 - \frac{1}{x}}} = \frac{1}{2}.$$

4. Explain why the function

$$f(x) = \begin{cases} \frac{x^2 - 4}{x^2 - 2x} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

is discontinuous at x=2. Find a function g(x) such that g(x)=f(x) when $x\neq 2$ and g(x) is continuous near x=2.

Solution:
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 4}{x^2 - 2x} = \lim_{x \to 2} \frac{(x+2)(x-2)}{x(x-2)} = \lim_{x \to 2} \frac{x+2}{x} = 2.$$

f(2) = 1 and $\lim_{x \to 2} f(x) \neq f(2)$. Hence, the function is discontinuous at x = 2.

$$g(x) = \frac{x+2}{x}$$

5. The position of a particle is given by the function $s(t) = t^2 - t + 2$

(a) Determine the average velocity on the interval [2, 2 + h]. Simplify your answer.

Solution:
$$v_{average} = \frac{s(2+h) - s(2)}{h} = \frac{(4+4h+h^2-2-h+2)-4}{h} = \frac{3h+h^2}{h} = 3+h.$$

(b) Determine the instanteneous velocity at time t=2.

Solution:
$$v(2) = \lim_{h \to 0} \frac{s(2+h) - s(2)}{h} = \lim_{h \to 0} (3+h) = 3.$$

Alternative way: v(t) = s'(t) = 2t - 1, v(2) = 4 - 1 = 3.

6. Find the derivatives the following functions. Mention rules used. You do not need to simplify your answer.

(a)
$$f(x) = 5x^2 \tan(3x)$$

Solution:
$$f'(x) = 10x \tan(3x) + 15x^2 \sec^2(3x)$$

Product, Power, and Chain Rules.

(b)
$$f(x) = x^4(x^2 - x)(x^2 + 3x + 1)$$

Solution:
$$f'(x) = 4x^3(x^2 - x)(x^2 + 3x + 1) + x^4(2x - 1)(x^2 + 3x + 1) + x^4(x^2 - x)(2x + 3)$$

Product and Power Rules.

(c)
$$f(x) = \cos^2\left(\frac{x^2 - 3}{x + 1}\right)$$

Solution:
$$f'(x) = 2\cos\left(\frac{x^2 - 3}{x + 1}\right) \left(-\sin\left(\frac{x^2 - 3}{x + 1}\right)\right) \cdot \frac{(2x)(x + 1) - (x^2 - 3)(1)}{(x + 1)^2}$$

Chain, Quotient, and Power Rules.

7. Find an equation of the normal line to the curve $y = \frac{\cos^2 x}{2}$ at the point $(\frac{\pi}{4}, \frac{1}{4})$. Write the answer in the slope-intercept form.

Solution: The normal line equation is $y - \frac{1}{4} = -\frac{1}{m} \left(x - \frac{\pi}{4} \right)$, where $m = y' \left(\frac{\pi}{4} \right)$.

$$y'(x) = \frac{d}{dx} \left(\frac{\cos^2 x}{2} \right) = \frac{1}{2} \cdot 2\cos x (-\sin x) = -\cos x \sin x, \ y'\left(\frac{\pi}{4} \right) = -\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = -\frac{1}{2}.$$

The normal line equation is $y - \frac{1}{4} = 2\left(x - \frac{\pi}{4}\right)$ or $y = 2x - \frac{\pi}{2} + \frac{1}{4}$.

8. A spherical balloon is being pumped at a rate 8 cubic feet per minute. Determine the rate at which the radius of the balloon is changing when the diameter is 4 feet.

Solution: $V = \frac{4}{3}\pi r^3$, where both V and r are functions of t. When the diameter is 4 feet, the radius is 2 feet. To find $\frac{dr}{dt}$ we differentiate the equation with respect to t

$$\frac{d}{dt}\left[V = \frac{4}{3}\pi r^3\right], \quad \frac{dV}{dt} = \frac{4}{3}\pi \cdot 3r^2\frac{dr}{dt}.$$

We have r = 2, $\frac{dV}{dt} = 8$. Then $8 = 4\pi \cdot 4\frac{dr}{dt}$ and $\frac{dr}{dt} = \frac{1}{2\pi}$ ft/min.

bonus problem Find the limit $\lim_{x\to 0} \frac{\cos(\pi+x)+1}{x}$ if it exists. If it does not exist explain why. Show all work. No L'Hospital's Rule is allowed.

Solution:
$$\lim_{x \to 0} \frac{\cos(\pi + x) + 1}{x} = \lim_{h \to 0} \frac{\cos(\pi + h) - \cos \pi}{h} = f'(\pi), \text{ where } f(x) = \cos x.$$