Math 0220 Quiz 2

Spring 2015 Solutions
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(b) [2 points] Find the domain of h(x)

Solution: ~ The domain is (—oo, —1) U (—1,0) U (0, c0).

(c) [2 points| Evaluate the limit lim A(z), if it exists or show that it does not exist.
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1. (1 pm) For the functions f(x) =2+ — and g(z) =
x

(a) [1 point] Find the function h(z) = fog
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Solution:  h(z) =

(b) [2 points] Find the domain of h(x)

Solution:  The domain is (—oo0, —2) U (=2, —1) U (=1, 00).



(c) [2 points| Evaluate the limit lim1 h(z), if it exists or show that it does not exist.
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Yes, the discontinuity is removable since the limit exists.

(b) [2 points] If it does then define a continuous function g(z) such that g(z) = f(x) for all
x # 1.

Solution:  g(z) =2+ 1+ 1
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Yes, the discontinuity is removable since the limit exists.

(b) [2 points] If it does then define a continuous function g(z) such that g(z) = f(z) for all
x # 1.

Solution:  g(z) = (z +1)(z* + 1)

bonus problem [5 points extra] Is there a number that exactly 1 more than its cube?

Solution:  We assume that such a number exists and denote it by x.



Then the problem can be described as: Is there a solution to the equation 23 + 1 = 27
In other words, is there a root of the polynomial f(z) = 2® —x + 17
f(=2)=-5<0, f(0)=1>0 and f(z) is continuous on the closed interval [—2,0].

By the Intermediate Value Theorem there is a number ¢ € (—2,0) such that f(c) = 0. So, ¢ is
a root that solves the problem.

Therefore, such a number exists.



