Spring 2015

Solutions

1. Use the Midpoint Rule with n=3 to approximate the integral $\int_{1/4}^{7/4} \frac{x}{x+1} dx$

Solution:
$$\Delta x = \frac{\frac{7}{4} - \frac{1}{4}}{3} = \frac{2}{4} = \frac{1}{2}.$$

The endpoints of three subintervals are $\frac{1}{4}$, $\frac{3}{4}$, $\frac{5}{4}$, and $\frac{7}{4}$. Midpoints are $\frac{1}{2}$, 1, and $\frac{3}{2}$.

$$\int_{1/4}^{7/4} \frac{x}{x+1} dx \approx \Delta x \left[f\left(\frac{1}{2}\right) + f\left(1\right) + f\left(\frac{3}{2}\right) \right] = \frac{1}{2} \left[\frac{1}{3} + \frac{1}{2} + \frac{3}{5} \right] = \frac{1}{2} \cdot \frac{10 + 15 + 18}{30} = \frac{43}{60}$$

2. A particle moves along a line so that its velocity at time $t \ge 0$ is $v(t) = t^2 + 2t - 8$ meters per second. Find the displacement of the particle during the time period $0 \le t \le 3$.

Solution: The displacement is $s(3) - s(0) = \int_{0}^{3} v(t) dt = \int_{0}^{3} (t^2 + 2t - 8) dt$

$$= \left[\frac{t^3}{3} + t^2 - 8t\right]_0^3 = 9 + 9 - 24 = -6 \text{ meters.}$$

bonus problem In the previous problem find the total distance traveled during the time period $1 \le t \le 3$.

Solution: $v(t)=(t+4)(t-2)=0 \Rightarrow t=2$ is a turning point, v(t)<0 when $1\leq t<2$ and $v(t)\geq 0$ when $2\leq t\leq 3$. Hence the total distance traveled is

$$\int_{1}^{3} |v(t)| dt = \int_{1}^{2} (-v(t)) dt + \int_{2}^{3} v(t) dt = \int_{1}^{2} (-t^{2} - 2t + 8) dt + \int_{2}^{3} (t^{2} - 2t - 8) dt$$

$$= \left[-\frac{t^3}{3} - t^2 + 8t \right]_1^2 + \left[\frac{t^3}{3} + t^2 - 8t \right]_2^3 = \left[-\frac{8}{3} - 4 + 16 + \frac{1}{3} + 1 - 8 \right] + \left[9 + 9 - 24 - \frac{8}{3} - 4 + 16 \right]$$

= 6 meters.