$Math\ 0220$

Midterm Exam 1

Fall 2017

Name:

No calculators, no books. Show all your work (no work = no credit). Write neatly. Simplify your answers when possible.

1. (10 points) The graph of y = f(x) is given.

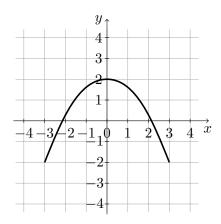


Figure 1: y = f(x).

Draw $y = -\frac{1}{2}f(x+1)$ by applying three-step process:

1. draw $y = \frac{1}{2}f(x)$; 2. draw $y = -\frac{1}{2}f(x)$; 3. draw $y = -\frac{1}{2}f(x+1)$.

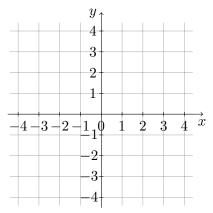


Figure 2: $y = \frac{1}{2}f(x)$

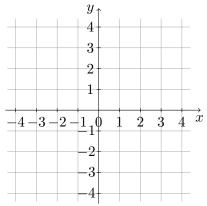


Figure 3: $y = -\frac{1}{2}f(x)$

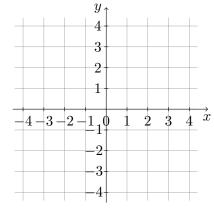
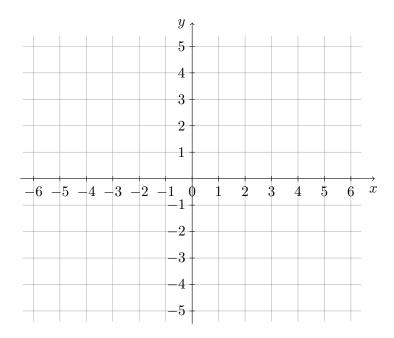



Figure 4: $y = -\frac{1}{2}f(x+1)$

2. (10 points) Sketch the graph of an example of a function that satisfies all of the given conditions.

$$\lim_{x \to -1^{-}} f(x) = 2$$
, $\lim_{x \to -1^{+}} f(x) = -2$, $f(-1)$ is undefined,

$$\lim_{x \to 2^{+}} f(x) = 1, \qquad \lim_{x \to 2^{-}} f(x) = 3, \qquad f(2) = -2.$$

3. (10 points) Use the Squeeze Theorem to show that $\lim_{x\to 0} x^2 \sin\left(\frac{2}{x}\right) = 0$.

4. (10 points) Find the limit $\lim_{x\to 3} \frac{2-x}{(x-3)^2}$.

5. (10 points) Find the derivatives of the function $f(x) = \sqrt{x-1}$ using the definition of derivative.

6. Find the derivatives of following functions. Mention rules used. You do not need to simplify your answer.

(a) (6 points)
$$f(x) = 2\pi$$

(b) (6 points)
$$f(x) = \frac{x^3 - 3x - 1}{\sqrt{x}}$$

(c) (6 points)
$$g(t) = t^3 \sin t$$

(d) (6 points)
$$h(x) = \frac{3x^2}{2+x^2}$$

(e) (6 points)
$$f(t) = \sqrt[3]{1 + \sec t}$$

7. (10 points) Find an equation of the tangent line to the curve $2x^2 + xy + y^3 = 12$ at the point (1, 2). Write the answer in the slope-intercept form.

8. (10 points) Find the linearization L(x) of the function $f(x) = \cos\left(x + \frac{\pi}{2}\right)$ at a = 0 and use it to approximate the number $\cos\left(\frac{\pi}{2} - 0.01\right)$.

bonus problem (10 points extra) Find the limit $\lim_{x\to 0} \frac{\cos(\pi+x)+1}{\pi x}$ if it exists.

If the limit does not exist explain why. Show all work. No L'Hospital's Rule is allowed.