1. The graph of y = f(x) is given.

Figure 1: y = f(x).

Draw $y = -\frac{1}{2}f(x+1)$ by applying three-step process:

1. draw $y = \frac{1}{2}f(x)$; 2. draw $y = -\frac{1}{2}f(x)$; 3. draw $y = -\frac{1}{2}f(x+1)$.

Solution:

Figure 2: $y = \frac{1}{2}f(x)$

2. Sketch the graph of an example of a function that satisfies all of the given conditions.

Figure 3: $y = -\frac{1}{2}f(x)$

Figure 4: $y = -\frac{1}{2}f(x+1)$

$$\lim_{x \to -1^{-}} f(x) = 2$$
, $\lim_{x \to -1^{+}} f(x) = -2$, $f(-1)$ is undefined,

$$\lim_{x \to 2^{+}} f(x) = 1, \qquad \lim_{x \to 2^{-}} f(x) = 3, \qquad f(2) = -2.$$

Solution:

3. Use the Squeeze Theorem to show that $\lim_{x\to 0} x^2 \sin\left(\frac{2}{x}\right) = 0$.

Solution: $-1 \le \sin u \le 1$, for any real number u. Let $u = \frac{2}{x}$, $x \ne 0$.

Then $-1 \le \sin\left(\frac{2}{x}\right) \le 1$ for all real x except x = 0.

We have $-x^2 \le x^2 \sin\left(\frac{2}{x}\right) \le x^2$ because $x^2 \ge 0$.

By the Squeeze Theorem $\lim_{x\to 0} (-x^2) \le \lim_{x\to 0} x^2 \sin\left(\frac{2}{x}\right) \le \lim_{x\to 0} x^2$

$$\lim_{x \to 0} -x^2 = 0, \quad \lim_{x \to 0} x^2 = 0.$$

Therefore $0 \le \lim_{x \to 0} x^2 \sin\left(\frac{2}{x}\right) \le 0.$

So
$$\lim_{x \to 0} x^2 \sin\left(\frac{2}{x}\right) = 0.$$

4. Find the limit $\lim_{x\to 3} \frac{2-x}{(x-3)^2}$.

Solution: Because x approaches 3 we can assume that x is the interval I = [2.9, 3.1].

Inside $I -1.1 < 2 - x < -0.9 \implies 2 - x < 0$.

For any x inside the interval I $(x-3)^2 \ge 0$ and hence $\frac{2-x}{(x-3)^2} < 0$.

As x is getting closer to 3 the expression $\frac{2-x}{(x-3)^2}$ can be made as large (in negative value) as we like.

Therefore $\lim_{x\to 0} \frac{2-x}{(x-3)^2} = -\infty$.

5. Find the derivatives of the function $f(x) = \sqrt{x-1}$ using the definition of derivative.

Solution:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$=\lim_{h\to 0}\,\frac{\sqrt{x-1+h}-\sqrt{x-1}}{h}\cdot\frac{\sqrt{x-1+h}+\sqrt{x-1}}{\sqrt{x-1+h}+\sqrt{x-1}}$$

$$=\lim_{h\to 0}\,\frac{(x-1+h)-(x-1)}{h\left(\sqrt{x-1+h}+\sqrt{x-1}\right)}=\lim_{h\to 0}\,\frac{h}{h\left(\sqrt{x-1+h}+\sqrt{x-1}\right)}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{x - 1 + h} + \sqrt{x - 1}} = \frac{1}{\sqrt{x - 1 + 0} + \sqrt{x - 1}} = \frac{1}{2\sqrt{x - 1}}$$

6. Find the derivatives of following functions. Mention rules used. You do not need to simplify your answer.

(a)
$$f(x) = 2\pi$$

Solution:
$$f'(x) = 0$$

Derivative of a constant is zero.

(b)
$$f(x) = \frac{x^3 - 3x - 1}{\sqrt{x}}$$

Solution:
$$f(x) = \frac{x^3 - 3x - 1}{x^{1/2}} = x^{5/2} - 3x^{1/2} - x^{-1/2}$$

$$f'(x) = \frac{5}{2}x^{3/2} - \frac{3}{2}x^{-1/2} + \frac{1}{2}x^{-3/2}$$

Power Rule.

Alternative solution:
$$f'(x) = \frac{(3x^2 - 3)\sqrt{x} - \frac{x^3 - 3x - 1}{2\sqrt{x}}}{x}$$

Quotient and Power Rules.

(c)
$$g(t) = t^3 \sin t$$

Solution:
$$g'(t) = 3t^2 \sin t + t^3 \cos t$$

Product Rule, Power Rule.

(d)
$$h(x) = \frac{3x^2}{2+x^2}$$

Solution:
$$h'(x) = \frac{6x(2+x^2) - (3x^2)(2x)}{(2+x^2)^2} = \frac{12x}{(2+x^2)^2}$$

Quotient Rule, Power Rule.

(e)
$$f(t) = \sqrt[3]{1 + \sec t}$$

Solution:
$$f(t) = (1 + \sec t)^{1/3}$$

$$f'(t) = \frac{1}{3}(1 + \sec t)^{-2/3} \sec t \tan t$$

Chain Rule, Power Rule, derivative of $\sec x$.

(f)
$$q(x) = \cos^2(5 + x^3)$$

Solution:
$$g'(x) = -2\cos(5+x^3)\sin(5+x^3)(3x^2)^{-2/3} = -3x^2\cos(2(5+x^3))$$

Chain Rule, Power Rule, derivative of $\cos x$.

7. Find an equation of the tangent line to the curve $2x^2 + xy + y^3 = 12$ at (1, 2). Write the answer in the slope-intercept form.

Solution: The tangent line equation is y-2=m(x-1), where m=y'(1).

To find y'(x) we use implicit differentiation $\frac{d}{dx}(2x^2 + xy + y^3) = \frac{d}{dx}(12)$.

 $4x + y + xy' + 3y^2y' = 0$ We plug in x = 1, y = 2: 4 + 2 + y' + 12y' = 0.

$$13y' = -6 \qquad y' = -\frac{6}{13}.$$

The tangent line equation is $y-2=-\frac{6}{13}\left(x-1\right)$ or $y=-\frac{6}{13}x+\frac{32}{13}$.

8. Find the linearization L(x) of the function $f(x) = \cos\left(x + \frac{\pi}{2}\right)$ at a = 0 and use it to approximate the number $\cos\left(\frac{\pi}{2} - 0.01\right)$.

Solution: L(x) = f(0) + f'(0)(x - 0)

We have $f(0) = \cos\left(\frac{\pi}{2}\right) = 0$, $f'(x) = -\sin\left(x + \frac{\pi}{2}\right)$, $f'(0) = -\sin\left(\frac{\pi}{2}\right) = -1$.

Hence L(x) = -x.

Then $\cos\left(\frac{\pi}{2} - 0.01\right) = f(-0.01) \approx L(-0.01) = 0.01 \Rightarrow \cos\left(\frac{\pi}{2} - 0.01\right) \approx 0.01.$

bonus problem Find the limit $\lim_{x\to 0} \frac{\cos(\pi+x)+1}{\pi x}$ if it exists.

If the limit does not exist explain why. Show all work. No L'Hospital's Rule is allowed.

Solution: Denote $f(x) = \cos x$.

Then $\lim_{x\to 0} \frac{\cos(\pi+x)+1}{\pi x} = \frac{1}{\pi} \lim_{h\to 0} \frac{\cos(\pi+h)-\cos\pi}{h} = \frac{1}{\pi} \lim_{h\to 0} \frac{f(\pi+h)-f(\pi)}{h} = \frac{1}{\pi} f'(\pi).$

 $f'(x) = -\sin x$. Therefore $\lim_{x \to 0} \frac{\cos(\pi + x) + 1}{\pi x} = -\frac{1}{\pi} \sin \pi = 0$.