Quiz 3

Spring	or Or	2012
Math	(280

Your	name:			

1. [5 points] Let S be the collection of vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ in \mathbb{R}^3 that satisfy the

property y = 2x. Either prove that S forms a subspace of \mathbb{R}^3 or give a counterexample to show that it does not. In your proof use the definition or an essential property of a subspace.

2. [5 points] With a full explanation determine whether the vector $\mathbf{b} = [1-3-3]$ is in row(A) if

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 3 & 0 \\ 3 & -1 & -5 \end{bmatrix}$$

[Hint: Start from the definition of row(A)].

3. [5 points] Find a basis for null(A) if

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 3 & 0 \\ 3 & -1 & -5 \end{bmatrix}$$

You can use any method.

bonus problem [5 points extra] Show that \mathbf{w} is in $span(\mathcal{B})$ and find the coordinate vector $[\mathbf{w}]_{\mathcal{B}}$ if

$$\mathbf{w} = \begin{bmatrix} 1 \\ 6 \\ 2 \end{bmatrix}, \qquad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right\}$$