Spring 2014

Your	name:
IOUI	name.

No calculators, no books. Show all your work (no work = no credit). Write neatly. Simplify your answers.

For each problem (except the bonus) you will get 40% of the maximum points if you do not write a solution. If you write a solution then your score will vary from 0 to maximum.

1. (15 points) Use the Laplace transform to solve the initial-value problem

$$y'' + 4y' + 4y = 0$$
 $y(0) = 3$, $y'(0) = -5$.

2. (15 points) Find the unit impulse response to the equation $e'' + 6e' + 10e = \delta(t)$.

3. (15 points) Find the solution to the initial-value problem

$$y'' + 6y' + 10y = g(t),$$
 $y(0) = 0,$ $y'(0) = 5,$

where g(t) is a piecewise continuous function.

4. (15 points) For the initial-value problem

$$y' = 3t - y, \quad y(0) = 2$$

calculate the first two iterations of Euler's method with step size h=0.2.

5. For the system of differential equations

$$x' = (y - x)(y + x^2 - 2)$$

$$y' = (y+x)(y-2)$$

(a) (5 points) find x-nullclines and y-nullclines.

(b) (5 points) calculate the coordinates of the equilibrium points.

(c) (10 points) Plot x-nullclines and y-nullclines. Use solid lines for x-nullclines and dashed lines for y-nullclines. Plot the equilibrium points and label them with their coordinates.

6. (20 points) Find the general solution to the system y' = Ay, where $A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$. Write the answer as a single vector.

bonus problem (15 points extra). Find real valued solutions $y_1(t)$ and $y_2(t)$ of the system

$$y_1' = y_1 + 2y_2$$

$$y_2' = -5y_1 + 3y_2$$