Fall 2015 Your name:

No calculators, no books. Show all your work (no work = no credit). Write neatly. Simplify your answers when possible.

1. (15 points) Find the inverse Laplace transform of the function $F(s) = \frac{6}{s^2 - 3s}, s \ge 3.$

2. (15 points) By using Laplace transform solve the initial-value problem y' - 3y = g(t), y(0) = 0, where

$$g(t) = \begin{cases} 0, & 0 \le t < 4 \\ 6, & t \ge 4 \end{cases}$$

Create a piecewise definition for your solution that does not use the Heaviside function.

Show all your work. You may use results from the previous problem.

 $3.~(15~{
m points})$ Using the unit impulse response function and convolution find the solution to the initial-value problem

$$y'' + 25y = g(t),$$
 $y(0) = 1,$ $y'(0) = 5,$

where g(t) is a piecewise continuous function.

4. (15 points) For the initial-value problem y' = 3t(y+t), y(0) = 2 calculate the second iteration y_2 of Euler's method with step size h = 0.1.

5. For the system of differential equations

$$x' = x - xy$$

$$y' = x^2y - y^2$$

(a) (15 points) find x-nullcline and y-nullcline. Draw a plot.

(b) (10 points) find equilibrium points. Mark them on the plot.

6. (15 points) Find the general solution to the system $\bar{y}' = A\bar{y}$, where $A = \begin{pmatrix} -1 & 6 \\ -3 & 8 \end{pmatrix}$. Write the answer as a single vector.

bonus problem (15 points extra) Find the inverse Laplace transform of the function $F(s) = \frac{s^2}{(s^2+1)^2}$. Simplify your answer.