7A /F	. 1	0000
M	ath	0290

Midterm Exam 1

Spring 2016	Name:
No calculators, no books. Show all your	r work (no work = no credit).
Write neatly. Simplify your answers wh	nen possible.

1. (15 points) A hospital received 200 mg of the isotope Iodine 131. After 14 days only 60 mg remained. Find the half-life of the isotope. Write answer in exact form.

2. (15 points) Determine a type of the given differential equation and find the solution of the initial value problem.

$$(3+t)x' + x = \sin t,$$
 $x(0) = 0$

3. (15 points) Determine a type of the given differential equation and find its general solution.

$$y' = 2xe^{-y}$$
, where $y' = \frac{dy}{dx}$

4. (15 points) A 0.2 kg mass is attached to a spring having a spring constant 5 kg/s². The system is displaced 0.3 m from its equilibrium position and released from rest. If there is no dumping present, find the amplitude, frequency, and phase angle of the resulting motion.

- 5. Consider the equation $y'' 6y' + 9y = e^{3t}$.
 - (a) (10 points) Find the fundamental set of solutions of the corresponding homogeneous equation.

(b) (10 points) Find a particular solution by using the method of variation of parameters.

(c) (10 points)	Find a particular solution by using the method of undetermined coefficients.

(d) (10 points) Find the general solution.

bonus problem (15 points extra) Find the general solution of the equation $\frac{x'}{x} = \frac{1}{x} + \tan t$.