Spring 2016

Solutions

1. (15 points) A hospital received 200 mg of the isotope Iodine 131. After 14 days only 60 mg remained. Find the half-life of the isotope. Write answer in exact form.

Solution: Let N(t) be the number of remaining nuclei after time t. It satisfies the IVP $N' = -\lambda N$, N(0) = 200. Its solution is $N(t) = 200e^{-\lambda t}$

To find λ (or $e^{-\lambda}$) we use the condition N(14) = 60. Then $200e^{-\lambda \cdot 14} = 60$, $(e^{-\lambda})^{14} = .3$, $e^{-\lambda} = (.3)^{1/14}$

So, we get $N(t) = 200(.3)^{t/14}$ (= $200e^{t \ln(0.3)/14}$)

Let T be the half-life. Then N(T)=100 or $200(.3)^{T/14}=100,~(.3)^{T/14}=.5,~\frac{T}{14}~\ln(.3)=\ln(.5)$

Hence $T = 14 \frac{\ln(.5)}{\ln(.3)}$ days.

2. (15 points) Determine a type of the given differential equation and find the solution of the initial value problem.

 $(3+t)x' + x = \sin t,$ x(0) = 0.

Solution: Divide both sides by 3 + t to get a first order linear differential equation:

$$x' + (3+t)^{-1} x = (3+t)^{-1} \sin t$$
.

The integrating factor is $u = e^{\int (3+t)^{-1} dt} = e^{\ln(3+t)} = 3+t$. Then

 $(3+t)x' + x = \sin t$ (which is the original equation), $((3+t)x)' = \sin t$, $(3+t)x = -\cos t + c$

So, the general solution is $x(t) = \frac{c - \cos t}{3 + t}$

The initial condition gives $x(0) = \frac{c-1}{3} = 0$, c = 1.

Therefore, $x(t) = \frac{1 - \cos t}{3 + t}$.

3. (15 points) Determine a type of the given differential equation and find its general solution.

 $y' = 2xe^{-y}$, where $y' = \frac{dy}{dx}$.

Solution: It is a **separable** equation.

$$e^{y}dy = 2xdx$$
, $\int e^{y}dy = \int 2x dx$, $e^{y} = x^{2} + C$.

The general solution is
$$y(x) = \ln(x^2 + C)$$

Note also, that
$$y(x) = \ln |x^2 + C|$$
 is not a correct solution.

4. (15 points) A 0.2 kg mass is attached to a spring having a spring constant 5 kg/s². The system is displaced 0.3 m from its equilibrium position and released from rest. If there is no dumping present, find the amplitude, frequency, and phase angle of the resulting motion.

Solution: The model is described by the IVP:
$$0.2x'' + 5x = 0$$
, $x(0) = 0.3$, $x'(0) = 0$.

After multiplication the equation by 5 we get
$$x'' + 25x = 0$$
.

The natural frequency is
$$\omega_0 = \sqrt{25} = 5$$
 and the general solution is $x(t) = c_1 \cos 5t + c_2 \sin 5t$.

Then
$$x'(t) = -5c_1 \sin 5t + 5c_2 \cos 5t$$

The initial conditions give
$$x(0) = c_1 = 0.3, x'(0) = 5c_2 = 0, c_2 = 0.$$

Hence
$$x(t) = 0.3\cos 5t$$

(The frequency is 5 rad/sec or
$$5/2\pi = 2.5/\pi$$
 Hz).

- 5. Consider the equation $y'' 6y' + 9y = e^{3t}$.
 - (a) (10 points) Find the fundamental set of solutions of the corresponding homogeneous equation.

Solution: Homogeneous equation is
$$y'' - 6y' + 9y = 0$$
.

Char. eq. is
$$\lambda^2 - 6\lambda + 9 = 0$$
. It has a repeated root $\lambda = 3$.

FSS:
$$y_1(t) = e^{3t}$$
, $y_2(t) = te^{3t}$.

(b) (10 points) Find a particular solution by using the method of variation of parameters.

Solution:
$$W(t) = e^{3t} \cdot (1+3t)e^{3t} - 3e^{3t} \cdot te^{3t} = e^{6t}$$

$$v_1 = -\int \frac{y_2 \cdot e^{3t}}{W} dt = -\int \frac{te^{6t}}{e^{6t}} dt = -\int t dt = -\frac{t^2}{2}$$

$$v_2 = \int \frac{y_1 \cdot e^{3t}}{W} dt = \int \frac{e^{3t} \cdot e^{3t}}{e^{6t}} dt = \int dt = t$$

Hence
$$y_p(t) = -\frac{t^2}{2}e^{3t} + t^2e^{3t} = \frac{1}{2}t^2e^{3t}$$
.

(c) (10 points) Find a particular solution by using the method of undetermined coefficients.

Solution: Since both e^{3t} and te^{3t} form FSS a trial solution has to be found in the form $y_p(t) = at^2e^{3t}$

Then
$$y'_p = (2at + 3at^2)e^{3t}$$
 and $y''_p = (2a + 12at + 9at^2)e^{3t}$.

$$y_p'' - 6y_p' + 9y_p = (2a + 12at + 9at^2 - 12at - 18at^2 + 9at^2)e^{3t} = 2ae^{3t} = e^{3t}$$
. So, $a = \frac{1}{2}$.

Hence
$$y_p(t) = \frac{1}{2}t^2e^{3t}$$
.

(d) (10 points) Find the general solution.

Solution:
$$y(t) = c_1 y_1 + c_2 y_2 + y_p = (c_1 + c_2 t)e^{3t} + \frac{1}{2}t^2 e^{3t} = (c_1 + c_2 t + \frac{1}{2}t^2)e^{3t}$$

bonus problem (15 points extra) Find the general solution of the equation $\frac{x'}{x} = \frac{1}{x} + \tan t$.

Solution: After multiplication both sides by x we get a linear first order equation: $x' - \tan t \cdot x = 1$.

Integrating factor is $u = \cos t$. Hint: $\int \tan t \, dt = \int \frac{\sin t}{\cos t} \, dt$ and use the substitution $u = \cos t$.

Then $(\cos t \cdot x)' = \cos t$, $\cos t \cdot x = \sin t + c$, $x(t) = \tan t + c \sec t$.