NΛ	ath	0	20	U
$_{1}v_{1}$	aun	·U	43	v

Midterm Exam 2

Spring 2016	Name:			
	=			

No calculators, no books. Show all your work (no work = no credit). Write neatly. Simplify your answers when possible.

1. (15 points) By using Laplace transform solve the initial-value problem $y'-y=6e^{-2t},\ y(0)=0.$ Show all work.

2. (15 points) Use the Heaviside function to redefine the function

$$g(t) = \begin{cases} 1, & 0 \le t < 1\\ \sin(2\pi t), & t \ge 1 \end{cases}$$

then find Laplace transform of g(t).

 $3.~(15~{
m points})$ Using the unit impulse response function and convolution find the solution to the initial-value problem

$$y'' - 6y' + 13y = g(t),$$
 $y(0) = 0,$ $y'(0) = 4,$

where g(t) is a piecewise continuous function.

4. (15 points) For the initial-value problem $y' = \frac{y}{t+1}$, y(0) = 1

calculate the second iteration y_2 of Euler's method with step size h=0.1. Simplify your answer.

5. For the system of differential equations

$$x' = x(6 - 2x - 3y)$$

$$y' = y(1 - x - y)$$

(a) (15 points) find x-nullcline and y-nullcline. Draw a plot.

(b) (10 points) find equilibrium points. Mark them on the plot.

6. (15 points) Find general solutions $y_1(t)$ and $y_2(t)$ of the system

$$y_1' = 3y_1 - y_2$$

$$y_2' = y_1 + y_2$$

bonus problem (15 points extra) $\,$ Find all equilibrium points for the system of differential equations

$$x' = 1 - 2y$$

$$y' = x\sin x + xy$$