Sample Final Exam 1

No calculators, no books. Show all your work (no work = no credit). Write neatly. Simplify your answers when possible.

- 1. Give the definition of
 - (a) rule of inference
 - (b) power set
 - (c) field
 - (d) Archimedean property
 - (e) reverse triangle inequality
 - (f) monotone sequence
 - (g) tail of a sequence
 - (h) convergence of Cauchy sequence
 - (i) absolutely and conditionally convergent series
- 2. Show that the proposition $P \vee (P \wedge Q) \Leftrightarrow P$ is a tautology.
- 3. Define a relation \sim on \mathbb{Z} by defining $a \sim b$ to mean a-b=5n for some integer n. In other words, the difference a-b is divisible by 5.

Is this an equivalence relation? Support your answer.

- 4. There is the definition of a continuous function: A function f is continuous if for all x, and for all $\varepsilon > 0$, there exists $\delta > 0$ such that for all y, if $|x y| < \delta$, then $|f(x) f(y)| < \varepsilon$.
 - (a) Write this definition using quantifiers.
 - (b) Negate the statement in the part (a), i.e. using quantifiers write a definition of a function that is not continuous.
- 5. Show that the set of all integer numbers is countable.
- 6. Let $x, y, z \in F$, where F is an ordered set. Suppose that x < 0, y < z. Show that xy > xz.
- 7. Prove that if t > 0 $(t \in \mathbb{R})$, then there exists an $n \in \mathbb{N}$ such that $n^{-2} < t$.
- 8. Let A and B be two nonempty bounded sets of real numbers. Let $C := \{a + b : a \in A, b \in B\}$. Show that C is a bounded set and that $\sup C = \sup A + \sup B$.
- 9. Find a number M such that $|x^3 x^2 + x 3| \le M$ for all $-4 \le x \le 3$.

- 10. For a < b, construct an explicit bijection from [a; b] to [-1; 1].
- 11. Let A and B be subsets of \mathbb{R} such that $A \subset B$. Show that $\inf A \geq \inf B$.
- 12. Is the sequence $\left\{\frac{(-1)^n n}{2n-1}\right\}$ convergent? Prove your statement using ε , M technique.
- 13. Is the sequence $\left\{\frac{n}{n-\sin(n)}\right\}$ convergent? Prove your statement by applying any method. Find the limit if the sequence is convergent.
- 14. Suppose that $\{x_n\}$ is a bounded sequence. Let $a_n := \sup\{x_k : k \ge n\}$. Show that a_n is a decreasing sequence.
- 15. Prove that $\left\{\frac{n-1}{2n}\right\}$ is Cauchy using directly the definition of Cauchy sequences.
- 16. Find if the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2+2}$ is convergent or divergent. Support your answer.