Summer 2016	Name:
No calculators, no books. Show all your work (no work = no credit). Write neatly. Simplify your answers when possible.	
Part 1. 30%	% of the test score.
Give the defin	ition of
(a) (1 point)	A tautology
(b) (1 point)	A function
(c) (1 point)	An ordered field F (assuming that F is a field)
(d) (1 point)	The Archimedean property of real numbers (part 1)

Part 2. 70% of the test score.

1. (5 points) Show that the proposition $\sim (Q \Rightarrow (P \lor \sim Q))$ is a fallacy.

2. (5 points) Negate the statement $\forall x \in \mathbb{R} \ \exists a, b \in \mathbb{R} \ \text{such that if} \ x < a \ \text{then} \ x < b.$ (Note: neither the statement nor its negation has to be true).

3. (5 points) For $(a,b),(c,d) \in \mathbb{Z} \times \mathbb{Z}$ define $(a,b) \sim (c,d)$ to mean that a+d=b+c. Is this an equivalence relation? Support your answer. 4. (5 points) Let A be a set and $\mathscr{P}(A)$ be its power set. Show that a function $f:A\to\mathscr{P}(A)$ is not a surjection.

- 5. (5 points) Let F be an ordered field and $x, y, z \in F$. Show that $x \neq 0 \implies x^2 > 0$. In a proof you may use the following properties of F:
 - $(1) \ \ \, x > 0 \ \ \, \Leftrightarrow \ \ \, -x < 0; \quad \, (2) \ \ \, x > 0, \, y < z \ \ \, \Rightarrow \ \ \, xy < xz; \ \, \text{and} \ \ \, (3) \ \ \, x < 0, \, y < z \ \ \, \Rightarrow \ \ \, xy > xz.$

6. (5 points) By using the Archimedean property of real numbers prove that if $t \in \mathbb{R}, \ t < 0$ then $\exists n \in \mathbb{N}$ such that $-\frac{1}{n} > t$.